

Mastering

Power BI

Build Business Intelligence Applications

Powered with DAX Calculations, Insightful

Visualizations, Advanced BI Techniques, and

Loads of Data Sources

Chandraish Sinha

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-91030-728

All Rights Reserved. No part of this publication may be

reproduced, distributed or transmitted in any form or by any

means or stored in a database or retrieval system, without the

prior written permission of the publisher with the exception to the

program listings which may be entered, stored and executed in a

computer system, but they can not be reproduced by the means

of publication, photocopy, recording, or by any electronic and

mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the

best of author’s and publisher’s knowledge. The author has made

every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage

arising from any information in this book.

All trademarks referred to in the book are acknowledged as

properties of their respective owners but BPB Publications cannot

guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

Ishie

My daughter, who taught me that patience is a virtue.

About the Author

Chandraish Sinha is the Founder/President of Ohio Computer

Academy, a company dedicated to IT education.

An IT trainer at heart, Chandraish resonates with his company’s

slogan - Inspire, Educate and Evolve. He is a Business Intelligence

learner and explorer. He has implemented multiple large and

medium scale BI solutions.

In his 22 years of career, Chandraish has worked with a variety of

dashboarding applications such as Power BI, Tableau, Qlik View,

Qlik Sense, IBM Cognos, Business Objects and Actuate.

He is passionate about data and explores applications that provide

better data insights. He has also authored multiple books on

Tableau and Qlik View. His Amazon author profile can be viewed

at the URL

He blogs regularly on BI applications such as Power BI, Tableau

and QlikView. These are the links to his blogs:

https://ohiocomputeracademy.com/category/power-bi/

https://www.learntableaupublic.com/

https://www.learnallbi.com/

LinkedIn Profile: www.linkedin.com/in/chandraishsinha

About the Reviewer

Saravanan Shanmugam (Sara) is a certified trainer for a plethora

of Data Science and Data Visualization technologies viz., PowerBI,

Snowflake, Tableau, Machine learning and Python. He has over 20

years experience in managing and delivering software projects. His

data platform experience includes design and development of

Business Intelligence Reporting solution with Power BI, Microsoft

SQL Server, SharePoint, SSIS and SSAS.

Sara has a Master’s degree in Business Administration with a

specialization in Technology Management from Anna University

and bachelor’s degree in Electronics and Communication. He has

worked in various implementation projects and products across

the globe on functionalities like ERP, EDI, Data Analytics using

Microsoft Technologies.

Acknowledgement

My sincere thanks to my readers who have supported my books

so far and inspired me to go on. I personally read all their

reviews and feedback.

My gratitude to Saravanan Shanmugam, Technical Reviewer of this

book for painstakingly going through the entire book and

providing valuable suggestions.

Finally, I would like to thank BPB Publications for giving me this

opportunity. Book writing involves a lot of people and thanks to

them for providing all the necessary assistance.

Preface

Power BI visualization is gaining popularity in the business world

due to its capability in modeling and effectively presenting the

data. Through the years, Power BI has evolved into a powerful

suite of products.

In my career, I worked on different reporting and visualization

applications such as Tableau, Qlik, IBM Cognos, Business Objects

and Actuate. I feel Power BI is at par and sometimes more

advantageous as compared to others.

The functionalities included in Power BI are as vast as an ocean.

Power BI desktop, Query editor, Visualizations, DAX formulas and

Power BI Service make the application robust but at the same

time can become a little difficult to understand. In this book, an

attempt has been made to introduce the readers to the basics

and then take them to more deeper concepts. This book covers

all aspects of creating a project in Power BI from start to finish.

As Power BI is getting adopted by more and more organizations,

it is generating good career options. The purpose of writing this

book is to equip readers with the essentials of Power BI in a

nutshell. This book is useful for the novice IT aspirants ready to

take a plunge and also for the seasoned IT professionals who

want to switch their career to Power BI.

In writing this book, I have followed the same approach as

observed in my other books. It is simple to follow and provides

concepts followed by hands-on exercises. All the data and solution

files are provided. The readers can follow the steps mentioned in

the book and create their own application.

The primary challenge I faced in writing this book are the changes

introduced by Power BI. Few times, the look-and-feel of the

application has changed. I have tried my best to keep up with the

changes, but, in case some discrepancies are found remember, the

changes are only in the interface and not in the concepts. A

menu item may have shifted in the ribbon but it will be there.

The way the functionality is implemented has not changed and

remains the same.

The primary goal of this book is to provide information and skills

that are necessary to create a Power BI application. This book

contains steps that will show readers how to install and create

Power BI application.

Over the 7 chapters in this book, you will learn the following:

Chapter 1 covers the basics of Business Intelligence and explains

all the important terms and definitions. It also explains different

components of Power BI and what they do. It will assist in

installing Power BI desktop and provides an overview of the data

tables used in the book.

Chapter 2 explains how Power BI connects to data from disparate

sources such as database tables, XLS files, relational database and

many more. It also introduces Query editor and describes how to

use it to shape the data.

Chapter 3 deals with creating and optimizing a data model in

Power BI. It covers relationships and how to create them in

Power BI. It also explains how to create joins by using merge and

append functionalities.

Chapter 4 is a key chapter which explains Data Analysis

Expression (DAX). DAX formulas are important for any Power BI

implementation. This chapter covers all the main functions and

shows how to implement them.

Chapter 5 visualizations are important as they help in

understanding the data. This chapter covers all the visualizations

available in Power BI and explains when to use them.

Chapter 6 describes components of Power BI Service. In this

chapter, you will deploy the application created in the Power BI

desktop to Power BI Service. This chapter also teaches how to

connect to data and create visualizations in Power BI Service.

Chapter 7 introduces to the concept of Row-level security (RLS). It

is important to keep the application secured and users see only

the data they are authorized to view.

Downloading the code

bundle and coloured images:

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/5d8ca8

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content to

provide with an indulging reading experience to our subscribers.

Our readers are our mirrors, and we use their inputs to reflect

and improve upon human errors, if any, that may have occurred

during the publishing processes involved. To let us maintain the

quality and help us reach out to any readers who might be

having difficulties due to any unforeseen errors, please write to us

at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by

the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book

published, with PDF and ePub files available? You can upgrade to

the eBook version at www.bpbonline.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get

in touch with us at business@bpbonline.com for more details.

At you can also read a collection of free technical articles, sign up

for a range of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

BPB is searching for authors like you

If you're interested in becoming an author for BPB, please visit

www.bpbonline.com and apply today. We have worked with

thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You

can make a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own idea.

The code bundle for the book is also hosted on GitHub at In

case there's an update to the code, it will be updated on the

existing GitHub repository.

We also have other code bundles from our rich catalog of books

and videos available at Check them out!

PIRACY

If you come across any illegal copies of our works in any form

on the internet, we would be grateful if you would provide us

with the location address or website name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are

interested in either writing or contributing to a book, please visit

REVIEWS

Please leave a review. Once you have read and used this book,

why not leave a review on the site that you purchased it from?

Potential readers can then see and use your unbiased opinion to

make purchase decisions, we at BPB can understand what you

think about our products, and our authors can see your feedback

on their book. Thank you!

For more information about BPB, please visit

Table of Contents

1. Understanding the Basics

Introduction

Structure

Objectives

Understanding Business Intelligence

Advantages of a Business Intelligence (BI) system

Business Intelligence components

Data sets

Extract, Transform, and Load (ETL)

Data warehouse

Data mart

Data model

Star schema

Snowflake schema

Key Performance Indicator (KPI)

Visualization

Dashboard

Power BI as a Business Intelligence application

Functions of Power BI

Power BI components

Power BI Environment

Different users of Power BI

Power BI desktop developer

Power BI Analyst

Power User

Executive User

Power BI licensing

Power BI desktop installation

Installation

Overview of Power BI desktop

Initiate a Power BI implementation as a developer

Analyze dataset used in this book

Power BI development setup

Conclusion

Questions

Answers

2. Connect and Shape

Introduction

Structure

Objectives

Data connections in Power BI

Connecting to data

Connecting to database tables

Loading the Orders table

Understanding Power Query Editor

Verifying the loaded query

Loading Customers and Products tables

Loading data from an Excel file

Loading multiple CSV files from a folder

Loading data from MS SQL server

Import and DirectQuery

Creating static table in Power BI

Why do we need a static table in our model?

Bonus section

Connecting to web data source

Connecting and loading the data from Microsoft SharePoint

Connecting and loading the from Azure SQL

More on Query Editor

Conclusion

Questions

Answers

3. Optimize Your Data Model

Introduction

Structure

Objectives

Introduction to data modeling

Best practices of data modeling

A word about relationships

Review the loaded tables

Creating a manual relationship between the Orders and Customers

table

Creating manual relationship between Products and Category tables

Combining queries Using joins

Joins

Loading OrderDetails.xlsx

Left outer join

Right outer join

Full outer join

Left anti

Right anti

Combining queries using append

Appending records from NewCustomers table to Customers table

Conclusion

Questions

Answers

4. Data Analysis Expressions (DAX)

Introduction

Structure

Objectives

Introduction to DAX

DAX functions

Calculated Columns and Measures

Calculated Columns

Verify the UnitPrice calculation

Calculated measure

Quick measures

Creating a Quick measure

Mathematical functions

Sum

SumX

SumX verses Sum

Count functions

Count

CountA

CountX

CountAX

CountBlank

CountRows

Information functions

ISERROR

USERNAME

LOOKUPVALUE

LOOKUPVALUE – SalesPerson_Location and Sales Person Table

Logical functions

If

And

Switch

Filter functions

Filter

Calculate

CalculateTable

ALL

Related

RelatedTable

Values

Date and time functions

Calendar

DateDiff

Variables in DAX expressions

VAR statement

Conclusion

Questions

Answers

5. Visualizations in Power BI

Introduction

Structure

Objectives

Review the data model

Understanding visualization

Introduction to Power BI reports

How to create a Report?

Creating multi-page reports using visualizations

Remove any pages or visualizations

Card

Copy/Paste a visual

Bar chart

Filters and Slicers

Line chart

Standardizing report development

Report themes

Creating and using templates

Line and stacked column Chart

Ribbon chart

Waterfall chart

Scatter chart

Donut chart

Treemap

Map

Filled map

Q&A

Drill through reports

Conclusion

Questions

Answers

6. Power BI Service

Introduction

Structure

Objectives

Understanding the Power BI Service

Power BI Service workflow

Power BI Service interface

Building blocks of the Power BI Service

Creating visualizations in the Power BI Service

Get data

Publishing reports from the Power BI desktop

Conclusion

Questions

Answers

7. Securing Your Application

Introduction

Structure

Objectives

Row-level security

Implementing the row-level security

Create visualization

Creating the role – Sales Person East

Verifying the roles in the Power BI desktop

Power BI Service configuration

Testing created roles in the Power BI Service

Conclusion

Questions

Answers

Index

CHAPTER 1

Understanding the Basics

Introduction

In this chapter, we will learn about the basics of Power BI. Power

BI is growing in popularity due to the functionality it provides to

the business users. This chapter will cover the basics of Power BI

as a Business Intelligence application. It will start with the

Business Intelligence fundamentals and explain the terms and

technologies in the BI paradigm.

We will learn about Power BI and understand how it works. This

chapter is important as it will lay the foundation of all the

subsequent chapters in this book.

Structure

In this chapter, we will discuss the following topics:

Understanding Business Intelligence (BI)?

Concepts of the Star and Snowflake schema

Power BI and its components

Installation of Power BI Desktop

Power BI Desktop Interface

Overview of the data used in the book

Folder setup for learning

Objectives

Understanding of the Business Intelligence concepts is a key to

success in Power BI. After completing this chapter, you will be

able to explain what is Business Intelligence and its terminology

like the Star schema, and the Snowflake schema. You will also be

able to differentiate between the Dimension and Fact tables, which

is the key to designing powerful data models and visualizations.

You will also learn what is Power BI and how it works.

Understanding Business Intelligence

Before defining the term Business Intelligence let’s understand the

terms data and information. In the world of Information

Technology data can be anything – text, numbers, or images in a

digital format. The data is raw, unorganized, or arbitrary, but

should be in a format that is understandable to a computer

system. Once loaded, the data is transformed, processed, and

interpreted by the system to produce meaningful and contextual

information.

In the business world, data and information are closely related

and thus used interchangeably.

BI relates to the set of technologies and techniques that collect

and categorize an organization's data and presents meaningful

information in a format that helps in better decision making. The

BI applications allow the developers to collect vast amount of data

from diverse sources, transform the data according to the

business requirements, and present it in a visual format – tables

and charts. BI does not make decisions for an enterprise, but

eases the analysis of data to arrive at actionable results.

Advantages of a Business Intelligence (BI) system

An enterprise can drive huge benefits by implementing a BI

System, which are as follows:

Data BI system facilitates the collection of data from diverse

sources. This data is stored in an enterprise-wide data warehouse

or a data mart. Since the data is centrally stored, it helps in

producing a single version of the truth.

Information The information is delivered in a visual format that is

understandable to the users. It helps in the quick delivery of

information in the form of interactive dashboards, tables, charts,

and maps. The users can get to the data faster and collaborate

with the information.

Secure BI System also supports secure information delivery, -that

is, the data is contextual and is delivered on a need-to-know

basis. The visualizations can be developed that display the

different data based on the organization's role or organization

structure.

Adhoc The business users can use the self-service BI applications

to perform their own data analysis. Doing so will reduce the

dependency on the IT technical team.

Business Intelligence components

Before plunging into a BI application like the Power BI, it is

important to learn about some of the following BI components:

Data sets

The core use of a Business Intelligence application is to enhance

the understanding of data. The data can come from disparate

sources. The data can be sourced from legacy systems, relational

database, cloud, or from various file-based applications, such as

Excel, CSV, or flat files. The data can be unstructured, such as

emails or webpages.

Extract, Transform, and Load (ETL)

ETL is a process of data integration and is used to combine

disparate data arriving from multiple sources. In an ETL process,

the data is extracted from the source, transformed to aggregate or

to implement business rules, and then loaded into the target

system. The data loaded in the target system is used for analysis.

The ETL process is used to build a data warehouse.

Data warehouse

A data warehouse is a process of managing large amounts of

data in an organization. It is designed to assist in the BI tasks,

especially in analytics. Given a large amount of historical data, a

data warehouse enables faster data query and analysis. A typical

data warehouse contains historical data, which is derived from a

variety of sources, such as operational or transactional databases.

A data warehouse works as a central repository of the aggregated

data from multiple sources and provides an organization with a

single version of truth. Since it contains historical records, it

empowers the data scientists and data analysts in improved

decision making and predictive analysis.

A typical data warehouse contains the following:

A relational database to store and manage the data. This

relational database is created in any of the applications, such as

Oracle, SQL Server, or db2, etc.

An ETL process to extract data from the multiple sources,

transform, and aggregate the data according to the organizational

needs and load the data in the data warehouse.

Data analysis and visualization applications, such Power BI to

assist in the analysis of the data.

The data warehouse is a core component of a BI implementation.

Data mart

Data mart is similar to the data warehouse but contains only the

specific business data within an organization. A data warehouse is

a central repository of an enterprise-wide data, while a data mart

contains the subset of data pertaining to a specific business or

user function. Both the data warehouse and the data marts are

used for reporting and analysis. A data mart can be sourced from

a data warehouse.

A typical data warehousing environment is shown in the following

diagram:

Figure 1.1: Data warehousing environment

The preceding figure 1.1 shows how the data warehouse and the

data marts are created, and are explained in words as follows:

An ETL process is the run process to extract the data from the

various operational or transactional databases or tables.

This data is stored in the staging tables.

A different ETL process is created to extract and transform this

data, which is loaded in the data warehouse database.

From the data warehouse, separate business or user specific data

marts are created.

A data warehouse is typically created for the reporting and

analytical needs of the organization. It helps in the data analyses

by reducing the number of tables and joining the ones that are

atypical of an operational database.

Data model

A data model displays how the different data entities are related

in a data warehouse environment. It presents a pictorial format,

showing different tables and the relationships between them. In

BI, a data model represents the organization's data and should be

designed for a faster data access. It should contain all the data

categories, hierarchies, and filters. The most popular data model

used in a data warehouse is the dimensional model, which is also

called the Star schema. The two kinds of tables in a star schema

are the Dimension and the Facts table.

Dimensions and facts: Dimension and Facts tables are the main

ingredient of any Business Intelligence implementation. These

tables are used to form the Star or the Snowflake schemas, which

are designed as part of building a data warehouse or a data mart.

Dimension The dimension tables contain the descriptive or

qualitative attribute of the data. For example, the customer

dimension may contain information about the customer, such as

the name, address, contact number, and so on. The dimension

fields usually contain the characters or the textual type of data.

The dimension tables are constructed from the operational or

transactional relational database. The dimension tables contain the

primary key with the respective foreign key in the fact table. A

dimension table provides context to a fact table.

There are different types of dimension tables, some of the

commonly used ones are as follows:

Slowly Changing dimensions It is a dimension table where the

row of the data in the table varies with time. It is used to track

the current and historical data. SCD is implemented in the

following 3 ways:

In type1 SCD, the existing row of data is simply overwritten. No

history is maintained, and the existing data is lost.

For example, consider the following employee record:

record:

record:

Table 1.1: Employee record

If employee John changes his department to HR, no history will

be maintained. The record will simply be overwritten:

overwritten:

overwritten:

Table 1.2: Employee changes department

The type2 SCD keeps the complete history of the data by creating

a new record with the Start date and the End date. Only one

record will be active at a time. This is the most popular way of

storing the historical data.

For example, consider the following employee record:

record:

record:

Table 1.3: Employee history with Active indicator

If employee John moves to a new department, HR, a new record

will be added to keep the history:

history:

history:

history:

Table 1.4: Employee history with only one department Active

In type3 SCD, the history of the data is maintained by using the

Current_Value and the New_Value columns. It is cumbersome to

maintain the history, as it is limited by the number of columns

needed to store the historical data. This technique is not

frequently used.

For example, consider the following employee record:

record:

record:

Table 1.5: Employee history using current and previous value columns

If employee John moves to a new department, HR, the history is

maintained by putting the new department under the

Current_Value column:

column:

column:

Table 1.6: Employee record with changed current value

Conformed A dimension table is said to be conformed if it has

the same context and content when used with the different fact

tables. The two conformed dimension tables will be exactly the

same even if used in the different data marts. Such tables, when

used in visualizations, provide a single version of the truth to the

users. The time dimension is the best example of the conformed

dimension, because the definition of the attributes such as year,

month, quarter, etc., will be the same across the organization.

Role playing A single dimension table can be joined multiple

times to a fact table. This can be done by creating multiple

copies of the dimension. These copies of the dimension tables

can connect to the fact table based on the context. A good

example of the role playing dimension will be the time dimension,

which will join with the customer order table to get the order

date, ship date, and delivery date.

Fact The fact table contains the foreign keys of all the dimension

tables. It stores the measurable or the quantitative attribute of the

data. For example, a fact table may contain products purchased by

the customer. The fact fields are the metric fields and generally

contain data of the type number. You can aggregate on the fact

fields, such as sum (sales).

Apart from storing measures, some of the other common fact

tables are as follows:

Fact-less-fact This fact table contains only the foreign keys of the

dimension tables and does not contain any measure values.

Conformed fact Similar to the conformed dimensions, the

conformed fact tables are used across multiple dimension models.

The dimension and fact tables are the basis of a star-schema.

Such tables are designed by consolidating multiple tables from an

operational database.

Star schema

Star schemas are created in a data warehouse and data mart

environments. It consists of the facts and dimension tables. The

shape of a star schema is such that the fact table is in the

middle, surrounded by multiple dimension tables. The schema

assumes the shape of a star and hence the name.

A star schema supports querying huge amount of data stored in a

typical data warehouse storage system. The queries run against

the star schema are faster due to the reduced number of joins

used to query the data.

An example of a star schema is as follows:

Figure 1.2: Star schema

Since the fact table contains the foreign keys of the dimensions

tables, during the ETL process, the dimension tables are loaded

before the fact tables.

Snowflake schema

A snowflake schema is also used in the data warehousing and

data marts. It is an extension of the star schema. In a star

schema, each dimension is stored in a single dimension table,

whereas in a snowflake schema, a dimension explodes or has a

lookup table. This further extension of the dimension tables gives

a picture of a snowflake, and hence the name. In the following

diagram, the product dimension is connected to another

dimension table,

Figure 1.3: Snowflake schema

In the Power BI, the developer connects to a data source and

creates a data model. Care should be taken to create a data

model close to a star schema or a snowflake schema.

Key Performance Indicator (KPI)

Key Performance Indicators (KPI's) are performance pointers that

depict the overall health of an organization. A good example of

KPIs can be of a car; before driving a car, you want to check all

the indicators, such as air pressure, fluids, heat, brakes etc., to

ensure a smooth journey.

The business executives gauge the KPI's to track the health of the

company, and base their business decisions on it. KPI's may be

different for each business unit; for example, for a Sales

department, the KPI's may be Product Sales Amount, the variance

between Actual and Budgeted amounts, etc.

KPIs play an important role in Business Intelligence. The

executives at various levels are usually interested in knowing the

KPI of their departments and sections. KPI's can be displayed in

the form of visualizations and dashboards.

Visualization

Human brain understands pictures faster than text. Visualization

represents data in a pictorial format and aids in faster surfing and

consumption of data. Interactive visualizations are created in the

form of tables, charts, and maps. Visualization helps the users in

understanding complex data. Some of the examples of

visualizations are bar, line, or pie charts.

The following is an example of a visualization displaying the

different categories in color for a better understanding:

Figure 1.4: Stack chart

The preceding chart is a stack chart for the Sales by Year and In

the absence of this chart, the users would have to spend

considerable amount of time in going through the several data

sheets to arrive at this data.

Dashboard

A data dashboard can be compared to a car's dashboard. It is a

visual snapshot of data. It is usually a combination of one or

more visualization used to display the key performance indicators

of a company. The visualizations in a dashboard are usually

related and display a key metric of the company.

The following is an example of a dashboard; the sales of the

organization is displayed in the form of a stack chart, trend chart,

pie chart, and table:

Figure 1.5: A typical dashboard

Visualizations give better insights to the users, but care should be

taken while creating a visualization. A visualization should be data

centric and should represent meaningful and contextual data.

Power BI as a Business Intelligence application

Microsoft Power BI is a Business Intelligence application. It is a

suite of tools designed for a better understanding of data. These

tools help in extracting the data from multiple sources, shaping or

transforming the data according to the business requirement, and

presenting the data in the form of interactive graphs, tables,

maps, and dashboards.

Functions of Power BI

Power BI can do the following:

Connect and extract large and diverse data sources. Power BI

compresses the data and hence is able to load data faster.

Powerful data transformation capabilities facilitate in creating a

robust data model. The tables can be joined based on the

common fields and various cardinalities. Data can be combined

from different sources, such as Excel, CSV, or a database.

Power BI can connect to the cloud-base or on-premises data.

The data model is used to create interactive reports and

dashboards. These reports and dashboards contain powerful

visualizations. Power BI has an array of charts to represent the

data.

The Power BI interface is intuitive and equips the business users

to gain better insights of data by creating their own aggregations

and visualizations.

Power BI reports and visualizations can be shared with the other

users.

Using row-level security, the reports in Power BI can be secured.

Power BI components

Power BI comes with a collection of different applications. These

applications have evolved over time and become useful, as more

functionalities were added to them. Some of these components

were integrated to excel as an add-on, but now they are also

available with the Power BI desktop. The following are the core

components of Power BI:

Power BI The Power BI desktop is an interface that interacts with

all the other tools in the Power BI environment. It is an authoring

tool and is used to connect and shape the data, write powerful

code for calculations, and create reports containing visualizations.

It uses the ribbon as a navigational menu to navigate to different

available tools. The Power BI desktop contains tabs such as

Home, Insert, Modeling and View.

Power Power Query is used for connecting and preparing the data

to create a dashboarding application. It enables the users to

connect and combine the data from hundreds of data sources. It

can be invoked using the Get Data option in the Power BI

desktop ribbon.

Get Data is used to connect and load the source data, as shown

in the following screenshot:

Figure 1.6: Get data dialogue

The Power Query Editor is used to edit the loaded queries or

tables. It allows the users to apply different transformations on

the tables. The available data transformation options are consistent

across all the data sources. When transformations are created,

Power Query uses the M code language in the background.

Any operations performed on the query or field is stored in the

applied steps.

Figure 1.7: Query Editor Interface

Power Power Pivot is the calculation engine of Power BI. It is

used to model the relationships between the tables and create

calculations. Power pivot uses the DAX Analysis to build formulas

and expressions.

Power Power View is the visualization technology that is used to

create tables, graphs, and maps. It is embedded in the Power BI

desktop and uses the drag-drop feature for faster creation of data

visualization.

Following types of visualizations are available in Power BI:

Figure 1.8: List of Visualizations

Power BI Service: The Power BI Service is the cloud-based service

of Power BI that allows publishing of reports, and datasets which

are created using the Power BI desktop, to the cloud. The Power

BI service will let you share visualizations with the other users

and perform data refresh as well. Visualizations are published to

the Service from the Power BI desktop.

Power BI Report Server: Power BI report server is similar to the

Power BI Service, except that it is on-premises and not on a

cloud service. It will interact with the on premise data, that is,

within the firewall.

Power BI mobile Power BI offers a set of mobile apps for all

kinds of mobile devices. Using these apps, users can interact with

the visualizations and data located on the Power BI Service or

report server.

Power BI Environment

The Power BI desktop can load and transform any data and

create visualizations. These visualizations can be published to the

Power BI Service or Report Server. The users can access these

visualizations from their desktop or mobile devices.

Power BI environment works as depicted in the following diagram.

It connects to the various data sources, helps in creating

visualizations, and these visualizations are deployed on the Power

BI service or Report server for user consumption.

Figure 1.9: Power BI Architecture

Power BI Service is used for the cloud-based data sources and

Report Server is used for the on premise data.

Different users of Power BI

Power BI can be used by different users in their day-to-day job.

These users may have various responsibilities within the

organization.

Power BI desktop developer

As a Power BI desktop developer, we have strong skills in one or

more databases. We love data and like to spend time in writing

queries to understand the underlying data. We devote our time in

understanding the relationships and cardinalities between the

tables. We are proficient in using DAX (Data Analysis Expressions)

to build formulas and expressions. The Power BI desktop

developers are good at representing data in the form of charts,

tables, and maps. By looking at a dataset, we can quickly figure

out which chart will be best suited to represent this data.

Responsibilities:

We use the Power BI desktop free edition or Pro for authoring.

We will be responsible for extracting the data from multiple data

sources and create relationships between them. We will transform

the data based on the organizational needs. We will create reports

and publish them on the Power BI Service or report server. We

will schedule data refreshes and will be responsible for the entire

application. A Power BI desktop developer will maintain the

application and if something goes wrong with the application,

he/she will be the main contact for any fixes or answers.

Power BI Analyst

A Power BI Analyst has strong data skills and is someone who

has been working in the organization for quite some time. With a

good understanding of the organization's data, he works closely

with the business users and executives. He is not concerned with

tables, relationships, and joins, but is more interested in the

output of the Power BI reports.

Responsibilities:

A Power BI Analyst will use the published reports on the Power

BI Service or Report server. He is responsible to provide answers

to the questions posed by his manager. He looks at the data for

trends and outliers. He provides answers to questions such as –

What is the trend of sales over the past five years; what is the

difference in sales from the current year to the previous year; how

will sales be impacted if more discounts are offered?

Before providing the answers to the higher management, a Power

BI Analyst ensures the quality and accuracy of the data.

For faster analysis, sometimes he desires to develop his own

Power BI reports instead of relying on the developers.

Power User

A Power User has strong technical skills. In his previous job, he

was responsible for running and managing the reports. In the

past, he might have worked in an application similar to Power BI

with an advanced knowledge of Microsoft Excel. He works with

the business users but is interested in learning the new

applications. He experiences that Power BI is intuitive, and he can

use it as a self-service to get to quick data insights.

Responsibilities:

A Power User will need the Power BI pro license or work in

Power service. He will use the existing data model created by the

developers to create his own visualization. He also enhances the

visualizations by adding or removing the filters. A Power User

enhances the business team as he possesses both technical and

the business knowledge.

Executive User

Executive Users are usually the head of a department or a

business unit. They are not concerned about the underlying

technology, but are more anxious to know about the overall health

of their business unit. Analysts and Power users work in an

executive user's team to provide him with answers, but he uses

Power BI to know the truth himself.

Responsibilities:

An Executive user consumes dashboards published on the Power

BI Service or Report server. Dashboards provide a quick glance of

the business unit data and inform him on how the organization is

doing. They look at the high-level data and are interested in

seeing the charts with colors – red or green – red being bad and

green being good. If something causes a concern, an executive

user collaborates with his team.

Power BI licensing

Power BI comes with different licensing options, which are as

follows:

Power BI Desktop free edition

This edition is used by the users responsible for

preparing/modeling the data and also creating the data

visualizations. The amount of data that can be used with this

version is 1 GB.

It provides access to the Power BI Service but does not allow the

sharing of the dashboard with the other users.

Power BI Pro

The users require the Power BI pro licensing for collaboration,

data modeling, content authoring, dashboard sharing, ad hoc

analysis, and report publishing. It is named User licensing and

allows the users to both create and consume content. Power BI

Pro allows up to 10 GB of data.

There is a monthly subscription for $9.99 per user. A trial version

for 60 days is available.

Power BI Premium

This license option provides the user access to the content, i.e.,

pre-published dashboards and reports. It licenses the number of

users having access to the content. These users can view the

content, but for content creation, the Power BI pro licensing is

required. The Power BI Premium allows the users to work with 50

GB of data. Larger implementations require such kind of licenses.

Power BI's competitive licensing and pricing structure encourages

new and existing users to adopt the application.

Power BI desktop installation

The following system requirements are needed for the successful

installation of the Power BI desktop:

Operating Windows 10, Windows 7, Windows 8, Windows 8.1,

Windows Server 2008 R2, Windows Server 2012, Windows Server

2012 R2

At least 1 GB

Internet Explorer version 10 or greater

Microsoft Power BI Desktop is available for 32-bit (x86) and 64-bit

(x64) platforms. Check your operating system configuration before

installing.

Installation

Please complete the following installation steps to install the

Power BI desktop:

To install the Power BI desktop, click on the following link:

https://powerbi.microsoft.com/en-us/downloads/

Several options will be displayed; select the one as shown below

and hit

Figure 1.10: Power BI desktop download

In the subsequent screen, select Open Microsoft

Figure 1.11: Microsoft Store

On the next screen, click on Install. It will prompt a sign in. If

you don't have an account with Microsoft, you can create one.

Once you are signed in, the Microsoft Power BI desktop will

download and run on your machine. Once the download is

completed, you will be asked if you want to launch the

application. Click on

The Power BI welcome screen will be displayed. On this screen,

you will see What's new on Power blogs, and tutorial.

If you want to try the Power BI Pro, you can sign in, or else just

close this welcome screen by clicking on X at the right-hand

corner.

Figure 1.12: Power BI Desktop Welcome Screen

Overview of Power BI desktop

Power BI desktop provides a range of functionalities to connect to

the data, edit query, create relationships, and build reports. The

following figure explains the Power BI desktop interface:

Figure 1.13: Power BI Desktop Interface

Depicted in numbers, the different options available are as follows:

The menu or The ribbon on the Power BI desktop is contextual.

We will see different options depending on which view is selected

from the left pane– Report, Data, and Model. These views are

explained in #2. Typically, menu has four tabs – Modeling, and

Home provides the data related options, such as connecting to

the data, edit query, creating new Measure and column. It also

gives the option to publish and share the visualizations.

The Insert option is contextual and shows up when Report View

is selected. It provides options for laying out visualizations, such

as showing gridlines, locking objects etc.

Modeling helps in creating a complex data model, New Measure,

roles etc.

Help provides help related to Power BI, such as blogs and

community.

These are 3 The first one is the Report view and is selected by

default when Power BI desktop is launched, second is the Data,

and third is the Relationship view. Hover and click on each to see

what do they display.

Report view displays the visualization created using the available

charts and fields on the right.

Figure 1.14: Visualization example

Data view displays the data of the loaded queries/tables. To

display the data, select the table from right, under the Fields.

Figure 1.15: Data preview

Relationship view displays the relationship between the queries.

Figure 1.16: Sample data model

Fields: Display the queries or tables loaded in the application. It

will display all the available tables and fields.

Power BI provides a wide range of charts and tables to display

the data. These visualizations show up when the Report view

(mentioned in 2) is selected from the left. To create a chart, click

on a chart and it will show up on the canvas area. To display the

data on the chart, select one or more Fields.

This is a canvas area, the charts, tables, and the other

visualizations will be displayed in this section. One or more filters

can also be applied to the visualizations. Power BI allows creation

of multipage reports. Reports are made up of one or more

visualizations. A new page is created from the Report view, by

clicking on the + sign at the bottom of the screen.

We will use and learn more about these options in the

subsequent chapters.

Initiate a Power BI implementation as a developer

If you have been hired as a Power BI developer, these tasks will

help in initiating and completing the project successfully. Every BI

project is initiated because the business wants to gain insights

into their data to take actionable decisions. As a developer, you

should be able to do the following:

Understand the organizational structure and stakeholders. These

are the key people with whom you will be working closely.

Confirm the Power BI infrastructure – type of licenses, use of

Power Service or Report server, etc.

Participate in requirement meetings. Meet with the users to

understand their requirements. Have an understanding on what

they are looking for; what KPIs they are most interested in; what

answers they are looking for; what are their pain points; do they

use any existing reports, if yes then, what are they not getting

from those reports that they want to get by using Power BI?

Since data is the key here, gain access and understand the data.

Look at the type of available data sources – relational, excel, text,

or any other. Consider the number of tables in the data set and

the relationships between them. Make sure the tables contain the

data that the users want to see in the reports.

Create mock-ups in Excel or some other tool to show the users,

how visualizations will appear in Power BI and set their

expectations.

If the users have not used Power BI before, then give them a

quick tour.

Connect and extract the data into Power BI. Follow the best data

modeling practices to create a robust and usable data model.

Follow the best visualization practices to create reports. During

development, be in touch with the users for previewing your

application.

Once the application is ready, publish it on Power BI Service or

Report Server. Schedule data refreshes as needed.

A developer has the responsibility of the overall Power BI

application. He should understand all the aspects of the

implementation.

Analyze dataset used in this book

This book uses the data which is a combination of relational

database, excel, and text files. It uses the following tables:

tables:

tables: tables: tables: tables: tables: tables: tables: tables:

tables: tables: tables: tables: tables: tables:

tables: tables: tables: tables: tables: tables: tables:

tables: tables: tables: tables: tables: tables: tables: tables: tables:

tables: tables:

tables: tables: tables: tables: tables:

tables: tables: tables: tables: tables: tables: tables: tables: tables:

Table 1.7: List of Tables used in the book

We will be working with these tables throughout the book to

create data model and visualizations. To explain additional

concepts, we may be using some other tables and connections,

the details of which you will see in the following chapters.

The following figure shows the structure of the Orders table:

Figure 1.17: Order table

Apart from the Orders table, there are other tables in our data

model, which are shown in the following figure:

Figure 1.18: Other tables

From the concepts, we learned so far in this chapter on

Dimensions and Fact tables that we can identify the dimension

and fact tables in the data source.

The dimension tables are as follows:

Customers

Products

Category

Sales Person Location

Sales Person

The fact table is as follows:

Orders

We will create a data model by creating a relationship between

the fact and dimension tables.

Dimension tables contain the descriptive or qualitative attribute of

the data, such as customer information, etc. Fact tables contain

measures or something we can aggregate, such as amount etc.

Our objective through the course of this book will be to load

these tables, create relationships between them, create

transformations, and build a robust data model that can be used

to create visualizations.

Power BI development setup

To setup the development environment, download the

accompanied ZIP code for this book and unzip the downloaded

file in C:\ of your laptop. Name the folder as the name of the

ZIP file, that is, PowerBI. The unzipped folder should contain the

following:

Figure 1.19: Development folder structure

This folder will contain chapter-wise sample Power BI applications

files.

The data files required by the application are stored in this folder.

It includes the MS access database PowerBI_Data.mdb file. It also

contains the excel and text files.

To make maximum use of this book, I would suggest readers to

follow the exercises given in this book and create their own Power

BI application files. Name your self-created files as Refer to the

sample files in case of any issues.

As a good practice, always analyze the data before you start

working on it. Navigate to your data folder and check the tables

and data contained in each table and file.

Conclusion

This chapter familiarized us with the basics of Business

Intelligence. We gained knowledge on the key components of data

warehouse and understood how the star schema and the

snowflake schema use dimensions and measures. We are now

equipped with the fundamentals of the Power BI application.

In this chapter we learned the following:

Key terminology of a Business Intelligence environment

The design of star schema and snowflake schema

Basics of the Dimension and Fact tables

What is Power BI and how it works

Overview of the underlying data sets used in this book

In the next chapter, we will load data from different sources, such

as relational database, Excel, Text files, and many more.

We will also be creating relationships to create a data model.

Questions

What is Business Intelligence?

What functions are performed by an ETL application?

Why is star schema called a ‘Star'?

What information is stored in a fact table?

Why is star schema preferred for reporting and analysis?

What is the advantage of a dashboard?

Why is Power BI considered a Business Intelligence application?

What is a query tool in Power BI?

Answers

Business Intelligence is a concept that deals with technology and

infrastructure pertaining to the extraction, transformation, and

presentation of data.

The ETL application performs Extract, Transform, and Load of

data. It extracts the data from the various sources, mostly

operational or transactional sources, transforms, and loads into

the data warehouse tables.

In star schema, a fact table is surrounded by the dimension

tables, giving it a star-like shape, hence the name.

Fact table stores measurable or metric fields.

Star schema is preferred for reporting and analysis because it

reduces the number of tables and relationships between them, and

therefore it is optimized for reporting.

The biggest advantage of a dashboard is that it gives quick

snapshot of your organization’s health by displaying all the Key

Performance Indicators (KPIs).

Power BI is considered a BI application because it can connect

and load diverse data. This data can be transformed according to

the visualization's requirement. Power BI has a large pool for

visualizations that help in better presentation of the data.

Power query is used for querying the data.

CHAPTER 2

Connect and Shape

Introduction

As we understood in the previous chapter, the power of any

Business Intelligence implementation lies in managing the data

appropriately. Power BI can connect to disparate data sources,

manage relationships between the different tables, and create a

powerful data model.

In this chapter, we will load the data from the different data

sources and transform them into the process of creating a data

model. The loaded tables will be used in the subsequent chapters

to create relationships, reports, and dashboards.

Structure

In this chapter, we will discuss the following topics:

Data connections in Power BI

Overview of Query Editor

Loading data from the database files

Loading data from Excel and CSV files

Loading data from SQL Server database

Loading data from Web

Loading data from SharePoint

Loading data from Azure

Performing transformations

Objectives

The objective of this chapter is to learn how the Power BI

connects to the different data sources. We will gain knowledge on

how to load the data from the different sources, such as database

tables, XLS, and CSV files. We will also study how to create our

own table in Power BI. As a bonus, we will understand how

Power BI connects to the Web data, SharePoint Lists, and Azure.

Data connections in Power BI

Power BI can connect and load the data from a wide range of

data sources. The data modeling capabilities of Power BI are not

restricted to the type of data source. We can perform any

operation with any of the data source. While loading the tables,

we can transform the data to match our requirements.

To check the available data sources, launch the Power BI desktop

and select Get Data from the Home ribbon as shown in the

following screenshot:

Figure 2.1: Using Get Data

The Get Data option will display the list of commonly used data

sources. Navigate all the way down in the list and click on it will

display different data sources, as shown in the following figure:

Figure 2.2: Available Data Sources

Power BI desktop segregates the data sources (to which it can

connect) into the following different categories:

File

Database

Power Platform

Azure

Online Services

Other

Other Other

Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other Other Other Other Other

Other Other Other Other Other Other

Table 2.1: List of all the data sources under each category

Power BI has a large number of available data sources. The

organizations can connect to a variety of data and create a data

model.

Power BI connects to the data using the native connectors. The

developers can also create custom connectors. Some custom

connectors are certified and distributed by Microsoft as certified

connectors. The Power BI desktop displays the certified third-party

connectors in the Get Data list of data sources (refer figure

Connecting to data

In the subsequent sections, we will see how to connect to the

various forms of data in Power BI. We will use the same set of

tables to show an example of how to connect to the database

files, excel files, text files, etc.

Connecting to database tables

In this exercise, we will load the database tables that are available

in the accompanied dataset We have used the MS-Access database

as it comes with the MS-Office installation and is readily available

on most laptops.

As a good practice, always analyze the data before loading it.

Navigate to your downloaded files’ folder, that is, C:\PowerBi\Data

and analyze the various tables in

Loading the Orders table

The Orders table is a database table and is present in the MS-

Access database As the name suggests, the Orders table stores

the details of specific order, such as, order id, order date,

shipment details, sales, profit, quantity, and discount amounts.

The steps to connect and load the Orders table are as follows:

Launch the Power BI desktop. Cancel the welcome screen.

Save your application.

In the Power BI desktop, navigate to the menu File and select

Save Navigate to C:\PowerBI\Apps and save your file in the Apps

folder.

You can provide any name. In this book, the application is named

as

If you are following the exercise, it is better to save the file with

your initials, so that you don't accidentally overwrite the

accompanied files.

From the Home tab, click on Get Data and at the bottom of the

drop-down list, click on

On the Get Data dialog box, select Database as we are loading

the database table. From the list of the data sources on the right,

select the Access database as shown in the following screenshot:

Figure 2.3: Selecting Access database

Click on Connect at the bottom. Browse to the location of the

downloaded that is,

Select the mdb file and open it.

The next dialog box, Navigator will list all the tables contained in

the database. Select/check the Orders table from the left. Selecting

the table will also display the limited data in the preview window

as shown in the following screenshot:

Figure 2.4: Navigator dialog box lists the tables

At the bottom, as shown in the preceding figure, there are two

options – Load and Transform The Load option will simply load

the data. The Transform Data option will navigate to the Power

Query Editor and let us perform the transformations before

loading the data.

Choose the option Transform You will be navigated to the Power

Query Editor.

There are different ways to connect to the data. In the preceding

exercise, we used MS-Access and loaded only one table. We can

also load multiple tables at one time.

Understanding Power Query Editor

The query editor connects to one or many data sources and helps

in transforming the data according to the organizational needs,

and loads it in the Power BI desktop. It uses the mashup query

language (M). When a data is imported in Power Query, it uses

M in the background. It also provides the developers an editor

window/interface to write powerful formulas and expressions.

The Query Editor can also be invoked from the Power BI desktop,

Home tab | Transform Data option. In the following figure, we will

explore the different options available in the Query Editor:

Figure 2.5: Query Editor Interface

In the preceding figure, depicted in numbers are the different

options available, which are explained as follows:

The menu or The ribbon in the Query Editor contains four tabs –

Add and

Home provides the common data related functionality like

connecting to a new data source, enter data, splitting columns, or

merging queries.

Transform provides the options for the data transformation tasks

such as group by, transpose, changing data types, splitting

columns, and so on.

Add Column contains column related tasks such as adding new

custom or conditional column.

View displays the advanced editor. The advanced editor generates

the code for each step taken within the Query Editor. It also

provides with an option to write the custom code to perform

transformations. We can see the code written for the operations

performed so far.

Go to View and select Advance Editor as shown in the following

figure

Figure 2.6: Advanced Editor

Since no transformation steps are performed, the code only

displays the source information of the database.

This lists the queries available for transformations. In our case, it

is Orders as this is the only query we have connected to so far.

This is the preview of the data from the selected queries. This

data is available for shaping and cleansing. When Query Editor

connects to the data, it automatically assigns the data types to

each of the columns based on the source data. The datatype can

be seen in the column header itself.

For example, take a look at the following figure:

Figure 2.7: Data Preview

In the preceding figure, the column header of Order ID is prefixed

with characters, such as which shows that the datatype of the

column is Text. Similarly, the Order Date column header shows a

small calendar icon to display that it has a datatype of

Datatypes can also be viewed and changed from the ribbon option

Home/Data Click on the Order ID column and navigate to the

Home/Data Type to view the associated data type as shown in

the following screenshot:

Figure 2.8: Data Type of fields

This displays the Query Settings and shows the properties of the

query.

APPLIED STEPS is also part of query setting. Any transformation

step applied to the query is displayed here. We can cancel any of

the applied step to undo our transformations.

Transformations will involve changing the data type and

summarization of the columns so that data is displayed in the

correct format.

Applying the transformations on the

Continuing with our orders query, complete the following steps:

Change the data types. It will be beneficial to change the data

types of the various columns according to our reporting needs.

We can remove the time from the Date columns, as we are not

interested in the time part of the dates.

Select Order Date and Shift + click on Ship Navigate to the

Home ribbon, and from the Data Type drop down list, change it

to

Take a look at the following figure on how to change the datatype

to date:

Figure 2.9: Changing data type to date

Also notice APPLIED STEPS on the right under Query it shows

Changed Type referring to the data type changed for the columns

as shown in figure To revert the changes, just close the specific

APPLIED STEPS and it will undo the changes.

Figure 2.10: Applied Steps

The datatype of a column can also be changed by right-clicking

on the column and selecting Change Here, many more options

are available, which can be used as and when needed. Take a

look at the following figure to note the options:

Figure 2.11: Alternative method of changing Data Type

After making changes in the Query navigate to the File menu and

select Close & This will apply the query changes and navigate to

the Power BI desktop.

Save your application.

Query editor has a lot of options to transform the queries. In the

section 'More of Query Editor', we will learn about it in more

detail.

Verifying the loaded query

In the Power BI desktop, in the data view, we can preview the

data and see all the loaded fields on the right, as shown in the

following screenshot:

Figure 2.12: Loaded fields

After reviewing the fields, we can decide which fields are needed

for the visualizations and if they are in the right format.

Changing the default summarization:

In the preceding field list of Orders table, notice the columns with

the summarization symbol (∑). Power BI has detected these

columns as measures, as they have the numeric data type. Power

BI will perform the summarization or aggregation on them.

While loading the tables, it is always a good practice to review all

the columns and change their summarization property as required.

Not all the columns need to be summarized, some can be keys

and will be used only for joins. Some of the columns are also

numeric fields but are used as identifiers or flags. We should

change the summarization property of any such columns in a

table.

After a quick review, we will notice that Power BI has identified

SalesPersonID as a measure, but this column is a key field and

will be used to join with the SalesPerson table (this table will be

loaded in the subsequent sections). We will change the

summarization of this column.

To change the summarization property, select SalesPersonID from

the fields (or data preview) navigate to Column tools ribbon and

change the default Summarization to Don't Summarize as shown

in the following screenshot.

Figure 2.13: Changing the default field summarization

Summarization helps in aggregating the results, but if the column

is not required for aggregation, its summarization property should

be changed.

The summarization of a column can also be changed to Sum,

Average, or any other type.

Changing the display format of the numbers:

While the data view is still selected, look at the data preview.

Observe the columns and See if the values in these columns

display appropriate results. For example, Profit is displayed in

multiple decimal places as shown in the following screenshot:

Figure 2.14: Columns with 3 places of decimals

We can change this display format to 2 places of decimals.

The option to change the decimal places is available from the

Column tools ribbon. Navigate to the Format option and change

the values.

To change the number of decimals, select Profit from the data

preview or fields and from the Column tools ribbon under change

the value of the decimal number to 2 places as shown in the

following screenshot:

Figure 2.15: Formatting Profit

Similarly, change the decimal places for any columns as required.

Review your Model:

Click on the Model view to see the loaded query. Right now, only

one table is displayed, as shown in the following screenshot:

Figure 2.16: Model view with Orders table

As more queries/tables will be loaded, additional tables will be

displayed in this view.

Save your application.

Loading Customers and Products tables

In this section, we will load multiple tables such as the

Customers and the Products tables.

The Orders table contains the details of the orders purchased. The

Customers table contains the details of the customers who made

the purchase. The Products table contains the product details.

Query editor can also be used to load tables. It is a better way

of loading the data, as you can transform the data too in the

same place. Going forward, for rest of the tables, we will use only

the Query editor.

The steps to load the Customers and Product tables are as

follows:

On the Power BI desktop, from select Transform

The following figure shows the Transform data with Query Editor:

Figure 2.17: Select Transform data to launch Query Editor

We will get navigated to the Query Editor. Click on Recent since

we have previously used the PowerBI_Data Microsoft Access

database, it will show up in the drop-down list. Select this dataset

as shown in the following screenshot:

Figure 2.18: Select PowerBI_Data database

From the Navigator, select the Customers and Products tables and

click on OK as shown in the following screenshot:

Figure 2.19: Selecting multiple tables

We will get connected to the tables Customers and In the list of

queries on the left, we will see three queries – Customers, and

Review Customers Query for any Click on Customers from the

Queries, review the data.

Notice that Postal Code is loaded as a decimal number. To verify,

click on the Postal Code and check the Data Type property in the

ribbon. Though Postal Code contains numerical digits, it is a

dimension field and should not be a number.

Change its data type property to text.

Review Product query for any Click on the Products query from

the left and check the data preview. No transformations are

required at this time.

Once you are done with the Query Editor. Navigate to the File

menu and select Close & This will apply the query changes and

navigate to the Power BI desktop.

Save your application.

Loading multiple tables is a good option if you have large number

of tables.

Verifying the loaded

In Power BI desktop, select the data view, to preview the data

tables, as shown in the following screenshot:

Figure 2.20: Loaded tables

Under Fields on the right, we can see all the loaded tables.

Changing the Default summarization for the Products table:

In the preceding field list of Products table, notice the CategoryID

field with the Summarization symbol (∑). This is a key field and

will only be used to create a join. There will be no summarization

or aggregation needed on this field. We can change the

summarization property of

Change the default summarization property of CategoryID by

completing the following steps:

In Power BI desktop, select the data view from the left and then

from under Products table, select navigate to the ribbon Column

tools and change Summarization to Don't Notice that this will

remove the ∑ symbol for

Similarly, review the other tables as well and remove the

Summarization where it is not needed.

Save your application.

In the next section, we will load the data from an excel file.

Review your model:

Click on the model view to see the loaded queries. We can see

three loaded tables, that is, and We can also see a line between

Orders and Products table, which depicts a relationship between

the tables, as shown in the following screenshot:

Figure 2.21: Loaded tables and a relationship between Orders and

Products

Power BI has auto detected a relationship between Orders and

leave it in place right now. We will cover relationships in the next

chapter.

Loading data from an Excel file

In the earlier exercises, we loaded data from the MS-Access

database. Power BI also allows combining the data from the other

sources.

Loading Category data from an Excel file

Categories and subcategories of various products are stored in an

Excel file This file is available in your folder location. We will load

this file, following the same process as in the earlier exercises.

The steps to load Category.xls are as follows:

In the Power BI desktop, select Transform Data from the ribbon

and navigate to Query Editor.

From the Query editor Home ribbon, select New and from the

dropdown list, select Since we are using this data source for the

first time, it is not available in the Recent

Select New as this data source has not been used before, as

shown in the following screenshot:

Figure 2.22: Selecting New Source

In the browser window, navigate to your enclosed that is,

In the Navigator window, select Category and then click on

If due to some reason, Query Editor is unable to recognize the

headers in your file, from the Home ribbon, select Use First Row

as This option is available below Data as shown in the following

screenshot:

Figure 2.23: Option to fix headers in Excel file

Review the loaded query. Notice, even though it is an Excel file, it

is loaded just like the database tables.

From the menu, select File and select Close & This will apply the

query changes and navigate to the Power BI desktop.

Change the default summarization of CategoryID field in the

Category table to Don't

Save your application.

In this exercise, we loaded one Excel file; we can also load

multiple Excel files at the same time.

Loading multiple CSV files from a folder

Power BI can also load multiple files located in a folder. This can

be done for the files having the same structure, that is, number

of columns, column format, etc. To understand this concept, we

will use four CSV files containing the yearly sales targets for the

sales persons. These sales targets are created for each of the

years, 2015 to 2018 as shown in the following screenshot:

Figure 2.24: SalesTarget_2015.csv

In the enclosed dataset, there are three more similar year-wise

files, that is, and These files are stored in a folder named

The steps for loading multiple CSV files from a folder are as

follows:

From the Power BI desktop Home ribbon, click on Transform You

will be navigated to Query Editor.

In Query Editor, select New Source and In the subsequent, Get

Data dialog box, select File and Select Connect as shown in the

following screenshot:

Figure 2.25: Selecting multiple files in a folder

Browse to the SalesTarget folder. The path should be

C:\PowerBI\Data\SalesTarget as shown in the following screenshot:

Figure 2.26: Specifying folder path

After the folder path is specified, Power BI lists all the files with

a folder path, as shown in the following screenshot. We can see

it in the data preview. This helps in identifying the source of the

files.

Figure 2.27: Files and path displayed

At the bottom, it provides with two options – Combine &

Transform Data or Transform Let's select Combine & Transform In

the Combine Files dialog box, we can verify the format of each of

the file.

The Delimiter option in the Combine Files dialog box displays the

different file delimiters, you can select any one, depending on your

type of the file.

Since we have loaded the CSV files from a folder, in Query Editor,

it displays the multiple transformation options for these files.

You should see five queries loaded, that is, Category, and

Select the SalesTarget query from the left. In the data preview,

observe that Year is loaded as a number. Select the Year column

and change the Data Type to

In the Change Column Type dialog box, select Replace

From the File menu, select Close &

In the Power BI desktop, in Data view, preview the data for You

will observe that it has combined all the files and loaded them as

one.

Loading the files from the folder is a good option to load

multiple similar files.

Loading data from MS SQL server

In the previous sections, we loaded the tables from the MS-Access

database. In this section, we will load the table from the relational

database SQL Server. It deals with some important concepts; we

will first discuss those concepts.

Import and DirectQuery

When connecting to the relational databases, such as SQL server,

we get two options on Data Connectivity mode – Import and

DirectQuery as shown in the following screenshot:

Figure 2.28: Query modes in SQL Server

When the import query option is selected, the tables and columns

from the source data are imported in the Power BI desktop. The

Power BI developer and users work with this imported data. If the

underlying data changes, the import needs to be refreshed. Import

is the default option. MS-Excel and the other file-based data

sources are always imported.

In this mode, the tables and columns are not imported in the

Power BI desktop. The connection is made directly with the data

source. When connecting with the larger datasets, the DirectQuery

option should be used.

This option does not utilize the full capability of Power BI.

Loading the Sales Person table from SQL

We will load Sales Person table which is stored in the SQL Server

database. This table contains the Sales Person's details such as

SalesPersonID and

To perform this exercise, you will need SQL Server. You can install

the express edition from the following link:

If you don't wish to use SQL Server, this table is also present in

your enclosed Excel files. We have provided two versions of the

data model – Chapter2_DbConn uses the Excel version of the

Sales Person table.

If you have SQL Server installed and configured, you can use

Chapter2_SQLServerConnection.

In the subsequent chapters, we will be using the excel version of

the Sales Person table, so that even if you don't have SQL Server,

you can still follow the chapters.

The steps to loading the Sales Person table from SQL Server are

as follows:

On the Power BI desktop, from the Home tab, select Transform

From the Query Editor ribbon, select New Source and select Sql

In the SQL Server database screen, specify your SQL Server

credentials:

Provide the Server Database name is optional.

In Data Connectivity select

The Advanced options in this screen can be used to write the

custom SQL query, as shown in the following screenshot:

Figure 2.29: SQL Server connection and query parameters

Click on

In the next SQL Server database screen, review your credentials

and select

You may get a warning on the encryption, as shown in the

following figure; click on

Figure 2.30: Encrypted connection warning

In the Navigator screen, select the database and the table that

you wish to connect to. Select the table Sales

Select

From the File menu, select Close &

In the model view, we can see that Power BI has auto-detected a

relationship between, Sales Person and SalesTarget based on Leave

it the way it is for now. We will discuss relationships in the next

chapter.

Save the application.

Similar steps can be used to connect to any other relational

database, such as Oracle.

Creating static table in Power BI

Sometimes we may have to use the data which is not present in

the database or files, in such cases, create a table in Power BI

and enter the data into this table. Such tables are called Static

tables.

We can take the data from the existing tables in our model and

create such tables.

The characteristics of a static table are as follows:

Static tables contain static data and cannot be refreshed as they

are not connected to the data source.

Static tables are created using the Enter Data functionality in the

Power BI desktop.

Static tables are created by either typing the values manually or by

copying and pasting the data from an existing table.

A static table, once loaded, can be in a relationship with the

other tables/queries in the data model.

Static tables are usually smaller tables and can be created on the

fly.

Why do we need a static table in our model?

For the sake of an example, consider that SalesPersonIDs in the

Sales Person table doesn't have Locations associated with them,

and this information is not available in the database, but client

has provided it in an email.

We will create a static table with two columns – SalesPersonID

and We will use SalesPersonID from the Sales Person table and

enter Location for each of these manually.

This table will be in a relationship with the Sales Person table.

The steps to create a static table for the Sales Person and his

respective location are as follows:

As a first step, we will get the SalesPersonIDs from the Sales

Person table.

In the Power BI desktop, select the Report view from the left.

From the bottom, create a new report page by clicking on the +

symbol.

Navigate to Visualizations and select From select Sales Person and

then select SalesPersonID, as shown in the following screenshot:

Figure 2.31: Displaying SalesPersonID from Sales Person

This will display the unique SalesPersonIDs in the table

visualization.

Export the SalesPersonIDs from the visualization to a CSV or

Excel file as shown in the following screenshot:

Figure 2.32: Exporting to file

Save this file with your other data files. Save this file as

SalesPersonID_Exporteddata.csv under

Navigate to the preceding path in Windows Explorer. Open the

CSV file and copy all the rows of the data (don't copy the

column header).

Now, to create the static table, complete the following steps:

On the Power BI desktop, from the Home tab,

You will see the Create Table dialog box, as shown in the

following screenshot:

Figure 2.33: Create Table dialog box

Double click on Column1 and name it

Double click on the next column displayed as * and name it as

Right click on the first cell below the SalesPersonID header and

paste the data you have copied from the

In the Location column, enter the values shown in the following

screenshot; name the table as

Figure 2.34: SalesPerson_Location Static table

Click on This will create a new table We can see it under

In the model view, Power BI has auto detected the relationship

between the SalesPerson_Location and Sales Person table.

SalesPerson_Location table is also enclosed as an excel file in

your enclosed data file. You can use it as needed.

Static tables are a useful way to add smaller datasets in your

Power BI model.

Review the data model:

After loading all the preceding tables, the data model will look like

the following screenshot:

Figure 2.35: Final data model

The data model displays the pictorial representation of the loaded

tables and relationships. It displays all the tables and the

relationships auto-detected by Power BI between Orders and

Products and between the Sales Person's tables.

Bonus section

In this section, we will learn about some more additional ways to

connect to the data in Power BI. The tables loaded in this section

will not be used in the data model that we created earlier.

These exercises will be presented as separate applications in the

enclosed files.

Connecting to web data source

Sometimes we may use web data to display in Power BI reports.

To load the data from the web, Power BI allows connecting to the

web data using the basic authentication.

In this section, we will connect to the list of Overall Solo winners

of the Race Across America. This data is available on the Web at

the following URL:

https://en.wikipedia.org/wiki/Race_Across_America

The steps to load the web data are as follows:

(This example is only for demonstration purposes to show how to

load the data from the Web. Refer to enclosed file

Launch the Power BI desktop.

On the Power BI desktop, select Transform Data from You will get

navigated to Query Editor.

From the Query Editor ribbon, select New Source and select

On the From Web dialog box, paste the URL:

https://en.wikipedia.org/wiki/Race_Across_America

Click on as shown in the following screenshot:

Figure 2.36: URL path of the web data

In the Access Web Content, choose the access method of your

choice or select Anonymous and select as shown in the following

screenshot:

Figure 2.37: Access methods for web data

The Navigator screen will show the list of tables available from

this URL.

You can select any table of interest. For the sake of this example,

we will select Table2, as shown in the following screenshot:

Click on

Figure 2.38: Data preview of web data

From the Query Settings (on the right), change the name of the

Query to Overall Solo Winners, as shown in the following

screenshot:

Figure 2.39: Renaming the Query

Review the columns. The year is loaded as text, change the data

type of the year to date.

From the File menu, select Close & You will get navigated to the

Power BI desktop.

In the model view, see the table loaded.

Save this file as

Using the preceding steps, we can connect to any data on the

Web.

Connecting and loading the data from Microsoft SharePoint

In this section, we will see how Power BI connects with

SharePoint. We will be creating a separate Power BI application to

demonstrate this example. Refer to

Chapter2_SharePointConnection.pbix in your apps folder.

The explanation of Microsoft SharePoint is beyond the scope of this

book. If you are interested to learn, checkout Microsoft's

documentation that is available online.

We will be using the list in SharePoint, which is created in the

following format, as shown in the following screenshot:

Figure 2.40: SharePoint list created using SharePoint application.

In SharePoint, a List is a collection of data that provides a flexible

way to organize the information.

If you have SharePoint available through your organization, create

a similar list to follow this example. The connection to SharePoint

can be made in the following two ways:

OData Feed: The Open Data protocol accesses a data source or a

database, by using a specially constructed URL. It permits for an

easier method for connecting and working with the data sources

hosted within an organization. It is a protocol for accessing data

over the web.

SharePoint List: A list in SharePoint is a collection of data that

gives us a flexible way to organize information. It is similar to a

table in database or Excel.

Microsoft SharePoint is used by many corporations to organize

their documents.

Connecting to SharePoint using ODataFeed:

For this exercise, we will be using the list created in SharePoint.

This list is called Sales Person Stores and contains the details

such as and

Getting the OData URL from

We need to get the OData URL, which we will be connecting to

from Power BI. To get the URL, navigate to your SharePoint site

and use the path similar to the following:

https:///_vti_bin/ListData.svc/

Here, servername is your SharePoint server name and listname is

the name of the list present on your server.

In my instance, it looks like the following:

https://techkonceptsolutions.sharepoint.com/_vti_bin/ListData.svc/Sal

esPersonStores

The steps to connect to the SharePoint List using ODataFeed are

as follows:

Launch the Power BI desktop.

From the Home tab, select Get Data and select From the Get

Data dialog box, select Other and choose OData Feed, as shown

in the following screenshot:

Select

Figure 2.41: Connecting to SharePoint

Provide the URL generated earlier and click on as shown in the

following screenshot:

Figure 2.42: URL specified in OData feed

If you get a connection error, follow the steps mentioned at the

end of this section.

Once connected, the preview of the data will be displayed. Click

on Transform if you wish to transform the data in Power Query

Editor.

Remove the extra columns, so that you have only and Change the

Query name under Properties to SalesPerson

Stores query after removing the extra columns, is shown in the

following screenshot:

Figure 2.43: SalesPerson Stores data preview

From the File menu, select Close &

In the model view, you can see that the SalesPerson Stores table

is loaded.

Save your application.

Many organizations use the SharePoint applications; you can use

the preceding steps to connect to the SharePoint list.

Resolving the OData Feed connection error:

Complete the following steps, if you get a connection error after

the SharePoint OData URL is provided:

On the Power BI desktop, from navigate to Transform Data, and

from the dropdown list, select Data source as shown in the

following screenshot:

Figure 2.44: Data source settings

In the Data source select your URL and click on Edit In the Edit

Permissions box, provide your SharePoint connection credentials,

as shown in the following screenshot:

Figure 2.45: Providing permission Credentials

Error in connection usually occurs due to the incorrect or missing

credentials. If you fix the permissions, the error will be resolved.

Connecting to the SharePoint Lists using the SharePoint connector:

In this example, we will connect to the SharePoint lists using the

SharePoint connector.

The steps to connect to the SharePoint List using SharePoint

connector are as follows:

Use the same application created in the previous section.

From the Home tab, select Get Data and select From the Get

Data dialog box, select Other and choose SharePoint as shown in

the following screenshot:

Select

Figure 2.46: SharePoint List data connection

In the site URL, specify the URL of your SharePoint site and

select as shown in the following screenshot. The following URL is

my organization's site.

Figure 2.47: Site URL

If you get a connection error, follow the steps mentioned at the

end of this section.

Once you are connected, select your list in the Navigator dialog

box, as shown in the following screenshot:

Figure 2.48: Selecting the SharePoint List

Follow the steps for Load or Transform Data as needed.

In the model view, you will see another table loaded SalesPerson

Power BI provides two options to connect to SharePoint – the

ODataFeed and SharePoint connector – you can use any one

method.

Resolving the SharePoint list connection error:

Complete the following steps, if you get a connection error after

the SharePoint site URL is provided:

In the Power BI desktop, from the Home tab, navigate to

Transform and from the dropdown list, select the Data source

In the Data source select your SharePoint site URL and click on

Edit Permissions and provide your SharePoint connection

credentials, as shown in the following screenshot:

Figure 2.49: Providing credentials for SharePoint List

This is similar to how we resolved the SharePoint connection error

in the previous example.

Connecting and loading the from Azure SQL

In this section, we will see how to connect and load the data

from Azure SQL. This example shows how to connect to Azure

SQL Server database. Refer to Chapter2_AzureConnection.pbix in

your enclosed files.

For this example, we will use the Azure portal. A sample database

AdventureWorksLT is created in Azure. To follow this example,

create a free account with the Azure portal and create an SQL

database.

The steps to create the Azure portal and Azure SQL database is out

of the scope for this book. If you are interested in more, follow the

Microsoft Azure documentation that is available online.

The steps to connect to the Azure SQL database are as follows:

Launch the Power BI desktop.

Save this file as

In the Power BI desktop, from the Home tab, select Get and click

on

In the next Get Data dialog box, select Azure and choose Azure

SQL database and select as shown in the following screenshot:

Figure 2.50: Connecting to Azure SQL Database

In the SQL Server database dialog box, specify the Server name

as mentioned in your Azure portal.

In the Data Connectivity you can select Import or Use the

Advanced options if you wish to write an SQL query to extract the

data.

Select

Provide the Azure SQL Server database credentials, as shown in

the following dialog box, as shown in the following screenshot:

Figure 2.51: Connecting to Azure SQL Server

In the Navigator window, you can select one or more tables based

on your requirement. In this example, four tables are selected.

Click on

This will create a data model, which can be used to create

visualizations, as shown in the following screenshot:

Figure 2.52: Data model depicting Azure SQL DB tables

The database in Azure is no different from any other database. It

is just available on the Azure cloud.

More on Query Editor

Since Query Editor is very useful and a powerful feature of Power

BI, we will look at it in more detail. In the previous section, we

have seen what Query Editor can do. In this section, we will dive

deep into understanding the other functionalities offered by Query

Editor.

A new dataset CustomerSales_Report.xls is used to explain the

various concepts of Query Editor. This XLS is available in the

enclosed data files. This data is not part of our primary dataset

used elsewhere in the book. Please review the data in the XLS

before proceeding.

In real time, data is never perfect. We will receive data in all the

different formats. Our objective is to take any data and transform

it according to how it is expected by Power BI and the

organization's reporting needs.

The CustomerSales_Report.xls file is a report prepared by a

fictitious employee, John Smith on the Sales generated from the

different customers between the years, 2015 and 2017. It is in the

cross-tab format. In this example, we will see how to load this

data using Query Editor and, in the process, we will learn about

the different functionalities.

Review of CustomerSales_Report.xls:

The XLS contains two sheets – CustomerSales_Report and The

structure of CustomerSales_Report sheet is shown in the following

screenshot:

Figure 2.53: Customer Sales Report

In the preceding figure, we can see that it has a report title, the

customer IDs are listed as a column, and the Sales for each of

the year are listed under the specific Year columns, that is, 2015,

2016, and 2017.

Problem with the preceding data:

If the preceding data is loaded without any transformation, it will

be difficult to derive useful information from it. Aggregating this

data will be an issue, and getting a year-by-year trend will be

problematic. Also, if we have more years in the future, it will

make the data load more cumbersome as each of the year will be

loaded separately.

The expected structure of the data is provided in the

ExpectedFormat sheet. We should apply the transformations and

convert the preceding CustomerSales_report in the correct format.

Any database will store the data in this way and it should be

loaded similarly in Power BI too, as shown in the following

screenshot:

Figure 2.54: Expected Format of the data

As we can see from the preceding figure, in this data sheet, the

customer ID, year, and sales are listed as separate columns. Now,

it is easier to see which year had the maximum sales. We can

also find out the year-by-year sales trend.

In the following exercise, our objective is to use Query Editor to

transform CustomerSales_Report.xls into the correct format.

The steps to load the CustomerSales_Report.xls format are as

follows:

(This data will not be used in our primary data model and will

only be used for demonstration purposes. Refer to

Launch the Power BI desktop, from the Home tab, select

Transform We will be navigated to Query Editor.

From the Home ribbon, select New Source and then Browse to

CustomerSales_Report.xls and open it.

In the Navigator dialog box, select CustomerSales_Report.xls and

select

In the loaded data, observe that it has loaded the report title as

the column headers and the three top rows are displayed as nulls.

We will fix these blank rows and headers.

From the Home ribbon, select Remove and from the drop-down,

select In the Remove Top Rows dialog box, specify the number of

rows that needs to be removed – here it is three – and select as

shown in the following screenshot:

Figure 2.55: QE_3 Remove Top rows

This will remove the three rows with nulls.

Notice, the first row contains the actual column headers of the

Excel. To get the correct column header, navigate to the Transform

ribbon and select Use First Row as This will remove the incorrect

column headers and use the first row as headers which contains

the correct names.

Look at APPLIED STEPS on the right. It records the

transformation steps that we take on the loaded data. If at any

time, we need to revert our changes, simply delete the step, as

shown in the following screenshot:

Figure 2.56: Transformation Steps

The preceding steps have loaded the data the way it is in the

first XLS sheet, that is, Now we will transform it, so that it looks

like the ExpectedFormat sheet.

The steps to transform CustomerSales_Report.xls are as follows:

In Query Editor, press Shift and select the columns 2015, 2016,

and 2017. From the Transform ribbon, select Unpivot Columns and

then select Unpivot Only Selected as shown in the following

screenshot:

Figure 2.57: Unpivoting Year columns

This will unpivot the 2015, 2016, and 2017 columns. In place of

those, we will see two new columns – one for Year and one for

Sales in each of the It will show some generic column titles, such

as attribute and value. We can right-click on these and rename

them.

The data will now be transformed in the expected format. After

the transformations, the correct format of the data is achieved, as

shown in the following screenshot:

Figure 2.58: Expected format of the data

The other transformation, such as changing the data types, can be

applied as discussed in the previous sections.

From the File menu, select Close & Apply to load this data in

Power BI.

We can view this table loaded in the Data view or Model view.

Split columns by delimiter:

If in the loaded data, we have a column which is a concatenation

of two values, we can split the column into two, based on certain

conditions. In our data, the customer ID column has a text and a

number such as AA-10315. We can split such data if it is needed

for reporting purposes.

The steps are as follows:

In Query Editor, select the query we have loaded. Select the

Customer ID column.

From select Split There are different options to split a column; for

this example, select By as shown in the following screenshot:

Figure 2.59: Split column

In the Split Column by Delimiter dialog box, specify how you

would like to split the column. Explore the different options under

Select or enter delimiter. We can select the default custom

because it uses the delimiter that we need, because the Customer

ID column uses – (hyphen) between the text AA and the number,

as shown in the following screenshot:

Figure 2.60: Specifying the delimiter

This will split the Customer ID column into two columns. We can

rename these columns according to our preference, as shown in

the following screenshot:

Figure 2.61: Columns Split using a delimiter

Group By in Query Editor:

Group by is an important functionality in Query Editor. It can be

used to check the totals in the table to make sure that the data

is correct. It comes in handy when a complex dataset is used

with multiple columns or when the tables are merged.

We will use the CustomerSales_Report data that we loaded earlier

and perform grouping on it. Before jumping to it, let's understand

the two important concepts of reusing the tables/query, that is,

Reference vs

Reference vs. duplicate:

Right-click on the CustomerSales_Report query loaded in Query

Editor. We will have two options – Duplicate and as shown in the

following screenshot:

Figure 2.62: Duplicate and Reference options

When the Duplicate option is selected, Query Editor makes an

exact copy of the query/table with all the 'applied steps' to the

query. This new query is independent of the original query. If we

perform any changes to the original query, the new query will not

be impacted.

The reference option simply references the original query/table. It

will have only one applied step, that is, It sources the data from

the original query. If we make changes to the original query, then

this referenced query will also change.

To explore, select Duplicate and reference and observe the

APPLIED

Applying Group By to CustomerSales_Report:

In this section, we will see how to perform Group By to calculate

the Total Sales by

The steps to perform Group By are as follows:

In Query Editor, right-click on the CustomerSales_Report query and

select

Rename the new query as Total by

With the new query selected, navigate to the Transform ribbon,

and select the Group By option. In the Group By dialog box,

change the defaults to calculate the Totals by as shown in the

following screenshot:

Figure 2.63: Group by Operation

This will give us a table for Total by as shown in the following

screenshot:

Figure 2.64: Group By calculates Total by Year

Group By to calculate Total by Customer:

Now, we will calculate Total by Complete the same steps as

earlier. Right-click on CustomerSales_Report and select Rename the

new query as Total By

In the Group By dialog box, select Customer Operation as and

Column as Sales as shown in the following screenshot:

Figure 2.65: Group By to calculate Total by Customers

Advanced Group By to calculate Totals by Year and Customer:

By using the advanced option in Group we can perform grouping

on multiple dimensions, that is, Year and

Complete the same steps that were given earlier. Right-click on

CustomerSales_Report and select Rename the new query as Total

By Year and

In the Group By dialog box, select the Advanced option. This

option will let us pick multiple dimensions and aggregations. Click

on Add grouping to add more dimensions, as shown in the

following screenshot:

Figure 2.66: Advanced Grouping

In the preceding exercises, we have loaded one table and created

three groupings on that data.

If we take the sales total of all the four, it should match. This

shows that our loaded data is correct. We got the same total,

that is, 1,563,985.61 in all the queries, as shown in the following

screenshot:

Figure 2.67: Totals from all the queries to compare results

Group by is an important way to check if the data is loaded

correctly. It is very useful when loading multiple tables or creating

joins between the tables.

Creating a Column in Query Editor:

In Query Editor, from the Add Column ribbon, we can create the

different types of columns, such as the custom column,

conditional column, etc. In this section, we will create a

conditional column based on sales, to display when the Sales is

Low, High, or Medium.

The column will be based on the following conditions:

If Sales is less than 1500, then display Low.

If Sales is greater than 1500, then display Medium.

If Sales is greater than 2000, then display Good.

The steps to create a conditional column are as follows:

(In this exercise, we will also see how to create a Duplicate of

the query.)

In Power Query Editor, right-click on the query

CustomerSales_Report and select Rename the new query as

Observe the APPLIED it will contain all the transformation steps

of the original query.

Navigate to the Add Column ribbon and select Conditional

In the Add Conditional Column dialog box, specify the following

condition:

New column name: This will add a new named column in the

query.

Column Name: Select the column on which the condition will be

applied.

Operator: Select the comparison operator, such as equal to or is

less than etc.

Value: It is used to input the value that we want to compare

against. It can be a text or a numeric value.

Output: Specify the output to be displayed if the condition is true.

Add Clause: It is used to specify more conditions.

An else condition can be specified to display the values if the

condition evaluates as false.

Take a look at the following screenshot for the specified

conditions

Figure 2.68: Adding a Conditional Column

This will create a column Comment in our query with the values

and Good based on the Sales amount, as shown in the following

screenshot:

Figure 2.69: Conditional column Comment displayed in the query

Query Editor has many other useful functionalities such as

merging or appending two queries. We will cover them in the

following chapter.

Conclusion

Power BI can connect and load the data in different ways. As we

saw in this chapter, data is loaded from the Relational database,

Excel, CSV files, SharePoint, Azure, and Web. We can also create

tables within Power BI. The advantage of Power BI is that data

can be loaded from the diverse sources but it can still be

combined together to provide a single version of truth.

This chapter also pays more attention to Query Editor; a good

knowledge of Query Editor is essential to transform the data in

Power BI.

In this chapter, we learned how to load and transform data; in

the next chapter, we will learn how to create relationships between

these tables to create a data model.

Questions

Which option is selected to load the data in the Power BI

desktop?

What is the difference between Get Data and Transform data?

What is APPLIED STEPS in Query Editor?

What is the default Data connectivity option when connected to a

database such as SQL Server?

What are the two ways to connect to SharePoint?

What is the difference between Duplicate and Reference in Query

Editor?

Which method is used to see if the loaded data is correct?

Answers

Get Data from the Home ribbon.

Get Data option is used to connect to the data source and load

data. The transform data option navigates you to Query Editor

and helps in transforming the data. It can also be used to load

the data.

APPLIED STEPS shows the steps performed in transforming the

data in the table.

Import.

The two ways to connect to SharePoint are as follows:

OData Feed

SharePoint Lists

The Duplicate and Reference options refer to the previously loaded

query. The Duplicate option creates an exact copy of the query

with all the applied steps. The new query is disconnected from

the original query, and any new changes made to the original

query will not be reflected in the new query.

The Reference option references or links to the original query. The

new query contains only one applied step, that is, source. Any

new changes made to the original query will be displayed in the

new query.

Group By.

CHAPTER 3

Optimize Your Data Model

Introduction

In the previous chapter, we learned how to extract, load, and

transform the data from the different sources, and create a data

model.

In this chapter, we will learn how to create a data model and use

joins. It is important that while creating the data model best

practices followed, so that the data model is simple, maintainable,

and reusable. It should also be easy for the other developers and

power users to follow.

Structure

In this chapter, we will discuss the following topics:

Concepts of Data modeling

Creating different types of relationships in Power BI

Different ways to combine the tables

Objectives

The objective of this chapter is to learn what is a data model and

the best practices of data modeling. Relationships are an

important part of a data model; we will learn all about

relationships in Power BI and create relationships between loaded

tables. We will also learn how to combine the tables using the

Power BI merge and append functionalities.

Introduction to data modeling

Data modeling is the most important aspect of a Business

Intelligence implementation. Without a proper data model, the

business will not get a true picture of the data. The organizations

spend considerable resources in creating a useful model.

Data model or data modeling is a process of organizing the data

elements and defining how they relate with each other. Data

model is created, taking into consideration the business

requirements. The questions to be asked before creating a model

should be – what data or KPI’s are most important to the

business and how do we arrive at this data? Given a set of data,

can we answer all the business queries effectively? A good data

model adheres to the business rules and assist in quick decision

making.

For example, from the tables and if the business wants to know,

in different years, the total sales by the customer region, what

type of relationship/s should exist between these tables to answer

this question? A good data model will help us in answering such

queries. The data model feeds structured data to the

visualizations, and thus helps in efficient reporting.

Best practices of data modeling

A data model is a basis for visualizations. It is a must that an

optimized data model is created as it will facilitate easy creation

of reports and dashboards.

The following best practices of data modeling will ensure that the

data model is robust, reusable, and performs in an optimized way.

Create a star schema. A star schema is good for reporting and

analysis due to a smaller number of joins. The data model

approach should be to create a schema closer to a star schema.

Load only the data required. If the source data contains ten years

of data but the users are interested in seeing only five years of

data, use filters and load only five years of data.

Reduce the number of tables and relationships. Load only the

tables required to create visualizations. If some tables are needed

to create relationships with the other tables, we can use them in

the data model but hide them from the report view.

Avoid using time portion in the date. When dates are present in

the table, avoid using the time portion in the date. Convert the

Date column data type to only date.

One fact table approach. Sometimes it may not be possible, but

an attempt should be made to have only one fact table in the

model.

Hide the tables and columns not required in the visualizations.

The report view should show a lesser number of tables and

columns.

Remove the fields which are present in more than one table. In

the Power BI desktop, we use the search function in fields. It will

show the occurrence of a field in different tables.

The tables with two columns in the format of an ID and

description should be hidden. These tables can be loaded to the

main table.

Combine the tables wherever necessary to reduce the number of

tables in the data model.

While designing a data model, always follow the best practices

and design as per the visualization needs.

A word about relationships

Since relationship is an important activity performed while creating

a data model, let’s learn about it. The relationship between two

tables work by matching the data in the key columns. In a typical

environment, two tables are connected based on the Primary key

on one table and a foreign key on another table. Usually the

columns/fields having the same name between the tables are

assumed to be related, though this may or may not be true.

For example, the two tables can have an ID field to uniquely

identify the row in the table, but these two tables may not be

connected/related to each only because of the common field

name. If such scenario occurs, the relationship should be reviewed

because a proper relationship will ensure accuracy of data.

There are three kinds of relationships or cardinality between the

tables, which are as follows:

Many to one (*:1): This is the default relationship and means that

many rows in one table relates to one row in another table.

One to One (1:1): In this relationship, one row in the first table is

related to one row in the second table.

Many to Many: In this relationship, many rows in the first table

relates to many rows in the second table. For example, Orders

and Customers tables.

In the Power BI desktop, creating relationship is an easy task. In

many cases, Power BI auto detects the relationship between the

column names in the two tables. If Power BI cannot detect a

relationship, we can create one by using the Home ribbon option,

Manage Relationships, as shown in the following screenshot:

Figure 3.1: Manage relationships option

Using the Manage relationships option, you can edit or review the

existing relationships. We use these concepts when we define the

relationships between our loaded tables.

Review the loaded tables

In Chapter 2, Connect and we have loaded various tables. The

loaded tables are as shown in the following screenshot:

Figure 3.2: Tables loaded in Chapter 2

This model can be viewed by launching Chapter2_DbConn.pbix

and navigating to the model view. It displays the loaded tables

and the relationships between the and Sales Person tables. These

tables were auto-detected by Power BI.

In the subsequent sections, we will learn about the relationships

in detail.

Review the relationship between the Orders and Products tables.

Save Chapter2_DbConn.pbix as

In the model view, we can see that Power BI has auto detected a

relationship between the Orders and Products table. These tables

should be in relationship using the keys in these tables, that is,

Product We will review the relationship to see if Power BI has

detected it correctly.

Hover over the relationship and right click. Select as shown in the

following screenshot:

Figure 3.3: Review relationship between Orders and Products

This will take you to the Edit relationship dialog box. Notice the

highlighted/greyed column, Power BI has auto relationship based

on these columns, which is correct, as shown in the following

screenshot:

Figure 3.4: Relationship between Orders and Products

Using the edit relationship, we can modify any relationship or

cardinality between the two tables.

Creating a manual relationship between the Orders and Customers

table

Power BI was unable to detect the relationship between these

tables, so we will create one manually, the steps to which are as

follows:

From select Manage The Manage relationships dialog box is

displaying one Active that is, between Orders and Products table.

From the buttons at the bottom, click on

In the Create relationship dialog box, select the tables and

columns that are related. Select Orders and Customers for tables.

Select Customer ID in both the tables as this field will be used to

create the relationship. Power BI automatically detects this

relationship to be Many to as shown in the following screenshot:

Figure 3.5: Creating a manual relationship

Click on The next screen will show two active relationships.

In the model view, we can see the relationship between the

Orders and Customers table.

Creating a manual relationship is a good option when Power BI

has not auto detected the relationship or when you want to check

and fix an existing relationship.

The cross-filter direction in the preceding Many to Many cardinality

shows how the data in the tables will be filtered. For the Orders

and Customers tables, it has three values – Customers filters

Orders, Orders filters Customers, or Both. For the Products and

Orders tables, it has values such as Orders filters Products,

Products filters Orders, and Both. Default is Both.

Creating manual relationship between Products and Category tables

In the model view, we can verify the loaded tables. Power BI is

unable to detect the relationship between the Products and

Category tables, so we will create one manually, the steps to

which are as follows:

From the Home ribbon, click on Manage In the next dialog box,

select

Select Products and Category for tables. Select CategoryID in both

the tables since the relationship will be based on

Based on the data in the tables, Power BI will auto-detect the

Many to Many relationship between the tables.

Select OK and then

Save your application.

Power BI auto-detects the relationship but we always have the

option to change the default relationship.

Review the data model:

After making the necessary relationship changes, we can review

the data model, as shown in the following figure:

Figure 3.6: Model view after relationship changes

It is always a good practice to review the data model after each

change.

Combining queries Using joins

Power BI supports combining the queries using the merge queries

option in Query Editor. It supports all the different types of SQL

joins. Joins are used to display the data from multiple tables or

when we have to merge two tables based on a join condition.

The following join types are present in Power BI and SQL:

Left outer join: Returns all the rows from the first table and only

the matching rows from the second table.

Right outer join: Right join is opposite to the left join. Returns all

the rows from the second table and only the matching rows from

the first table.

Full outer join: Returns all the rows present in the first and the

second table.

Inner join: Only the matching rows between the two tables are

returned, else it returns zero rows.

Left anti: Returns all the rows from the first table which do not

have a match in the second table.

Right anti: Returns all the rows from the second table which do

not have a match in the first table.

Joins help in combining the data from multiple tables. It will also

help in reducing the tables from the report view. Joins in Power

BI are implemented using the Merge Queries in Query Editor, as

shown in the following screenshot:

Figure 3.7: Merge Query

Merge Queries have the following two options:

Merge Queries: It merges the second table with the first table.

Merge Queries as New: It creates a new table which is a result

of the Join between the first and the second table.

We can use either option but the Merge Queries option should be

preferred, as it will keep the original table/s and maintain the

relationships with the other tables.

If Merge Queries as the New option is used, it will create a new

table and we have to recreate the relationships.

Joins

To understand joins, we will be using As our current data model

doesn’t require any joins, a few more tables will be introduced in

this section to show how joins work. The first such table will be

This table is present in the enclosed dataset.

Loading OrderDetails.xlsx

For this exercise, save the previously created

Chapter3_CreatingRelationships as Complete the following steps to

load We learned how to load XLS file in Chapter 2, Connect and

The steps to load OrderDetails.xlsx are as follows:

From Home tab, select Browse to the enclosed data files and

select In the navigator dialog box, select OrderDetails and select

From the Home tab, use the Manage relationships to create a

relationship between Orders and OrderDetail based on the Order

ID field.

The relationship between these tables will appear like the one in

the following figure:

Figure 3.8: Orders and OrderDetails relationship

There are other tables in the data model, but here only these two

tables are displayed because we will be dealing with these tables

in this section.

Left outer join

Orders and OrderDetail tables:

The Orders and OrderDetail tables can be joined, as OrderDetails

contain the details of the orders present in the Orders table. The

join operation to be performed on these tables will be a left outer

join with orders as the first table, that is, we want to take all the

records from the Orders table and only the matching Order ID

records from the OrderDetails table. There may be a scenario

where OrderDetails contains orders which are not present in the

Orders table, the left outer join will avoid those orders.

The steps to the left join Orders and OrderDetails tables are as

follows:

On the Power BI desktop, from the Home tab, select Transform

In Query Editor, from the queries on the left, select the Orders

table and from the Home tab, select the Merge Queries option

and then select Merge

In the merge dialog box, Orders is the first table and select

OrderDetails as the second table.

Select Order ID in both the tables, as join will be performed

based on the Order

Based on the data in the two tables, the join kind is already

selected as left outer. We can change this join type, if needed, as

shown in the following screenshot:

Figure 3.9: Left Outer Join Orders and OrderDetails

Click on

In the next data preview window, scroll all the way to the right

and we will see OrderDetails as the last column. Click on the

double arrows on the right to select the columns you want add to

the Merge1 table and click on OK, as shown in the following

screenshot:

Figure 3.10: Selecting columns from OrderDetails

From the File menu, select Close &

In the Power BI desktop, under Data verify the fields in and the

fields that came from the OrderDetails table. These fields will be

prefixed by such as OrderDetails.Quantity and

We can rename these fields to remove the prefix OrderDetail as

they are now part of the Orders table. Under right-click on

OrderDetails.Quantity and OrderDetails.UnitPrice and rename by

removing The fields are renamed as Quantity1 and Unit

In the data model, right click on the OrderDetails table and select

Hide in Report The report view will show less tables as compared

to earlier.

Save your application.

The merging or joining of table will combine the data in the two

tables.

Query Editor provides the option for Fuzzy matching when trying

to find matches across joining the table columns. Fuzzy matching

is a string comparison logic that compares the items in a

separate list and joins them if they’re close/match to each other.

If performing the string comparison, you can specify Similarity

threshold which indicates how similar the two values need to be

in order to match.

Right outer join

The right outer join is similar to the left outer join, the only

difference being that the right outer join will take all the rows

from the right table and the matching records from the left table.

The steps are similar to the left outer join, described earlier, only

the join type will change.

The steps to the Right outer join SalesTarget and Sales Person

tables are as follows:

On the Power BI desktop, from the Home tab, select Transform

In Query Editor, from the Queries on the left, select the

SalesTarget table and from the select Merge Queries and then

select Merge

In the merge dialog box, SalesTarget is the first table and select

Sales Person as the second table.

Select SalesPersonID in both the tables, as join will be performed

based on the

Change the Join kind to Right Outer, as shown in the following

screenshot:.

Figure 3.11: Right Outer Join SalesTarget and SalesPerson

In the next data preview window, scroll all the way to the right

and we will see Sales Person as the last column. Click on the

double arrows on the right to select the columns that we want

add to the merged table.

Let’s select Name as it is not present in the SalesTarget table.

Select OK and Close & Apply to close Query Editor.

In the Power BI desktop, under Data verify the fields in the

SalesTarget table; the fields that came from the Sales Person table

is Sales

Full outer join

This returns all the rows present in the first and the second table.

The process of performing the full outer join is similar to the

previously mentioned joins. We have to change the join kind in

Query Editor to full outer.

It will return all the rows from both the tables.

The steps to perform the Full Outer Join between Products and

Category tables are as follows:

Follow the same steps as earlier, to create a join between the two

tables. Select table and then select Merge In the Merge dialog

box, select the first table as the Products table, and select the

second table as the Category table. Select CategoryID in both the

tables.

Change to Join kind to Full as shown in the following screenshot:

Figure 3.12: Full Outer Join selection

In the data preview window, we can select the columns we need

from the Category table, that is, Category and SubCategory as

these columns are not present in the Products table.

Full outer joins should be avoided as it returns the data from

both the tables and can take a long time to run.

Left anti

This returns all the rows from the first table which do not have a

match in the second table.

Right anti

This returns all the rows from the second table which do not

have a match in the first table. These joins are self-explanatory

and can be worked in the similar fashion as the previous joins.

Combining queries using append

The other way to combine Queries in Power BI is using the

Append Queries option. Append is similar to Union in SQL. It

combines the two queries/tables having the same columns and

structure. The Append Queries option is also available in Query

Editor, below the Merge Queries option, as shown in the following

figure:

Figure 3.13: Append Queries

It has the following two options:

Append It appends/combines the second table in the first table.

Append Queries as It appends/combines the query and creates a

new table, leaving the old ones in the original format.

We can use any of the previously mentioned options; the first

option should be preferred as it will not create a new table but

simply append the rows in the existing table.

Appending records from NewCustomers table to Customers table

The Append Queries option is used when in a business scenario,

we have to append new records to an existing table. For example,

we have an existing Customers table which currently has 994

rows. We receive more customer records which need to be added

to this table. In such cases, the Append Queries option is used.

In this exercise, we will append the existing customers table with

a new list of customers. We will do so, using the Append

For this example, we will use This file is present in the enclosed

dataset. It contains five customer records in the same format as

the Customers table. We will append these records to the existing

Customers table, as shown in the following screenshot:

Figure 3.14: NewEmployees.xls

The steps to be followed will be, load the NewCusotmers.xls and

then append it to Customers and then hide NewCustomers table.

When using Append, the second table should have the same

column headers and data types as the first table. If the column

headers are different, the second table will create new columns

and show nulls for the corresponding column headers in the first

table. So before performing Append, clean your data to make sure

the column headers in both the tables are the same.

The steps to append NewCustomers to the existing Customers

table are as follows:

In the Power BI desktop, from select

Browse to your data folder and select In the Navigator dialog box,

select the NewCustomers and select This will create the

NewCustomers table in the model view.

Figure 3.15: NewCustomers.xls table loaded in the data model

Now we will append this table with the Customers table. From

the Home tab, select Transform data to navigate to Query Editor.

In Query Editor, under select Customers from the left and from

select Append Queries and then select Append

From the Append dialog box, select the two tables as we are only

concatenating/ combining rows from two tables. Select the

NewCustomers table in the table to append.

Select as shown in the following screenshot:

Figure 3.16: Appending the tables

From the File tab, select Close &

On the Power BI desktop, in the Data select we can see that the

records from the new table are appended to the Customers table.

We can filter in Customer ID to see the new rows, as shown in

the following screenshot:

Figure 3.17: Customers table with the appended rows

After performing the preceding steps, we will notice that

Customers table has 999 records.

Now we can hide the NewCustomers table from the data model,

as all the records are added to the Customers table.

Conclusion

Data model is an important component of a BI implementation as

all the data used in visualization is sourced from a data model.

In this chapter, we learned how to create a data model by

creating relationships. We learned the different kinds of

relationships available in Power BI.

We also learned that data modeling requires combining the data

using merge and append. Combining the tables reduces the

number of joins performed while creating visualization, and thus

improves the overall performance of the application.

In the next chapter, we will dive deeper into DAX and learn about

creating the different kinds of aggregations and other functions

using DAX.

Questions

How is a data model created?

How are relationships created in Power BI?

What are the different techniques to combine the tables?

What is the difference between Merge and Append Queries?

What are the different ways to reduce the tables and columns in

the report view?

Answers

Data model is created by defining the relationships between the

data elements. Relationships are created based on the matching

data between the two columns or based on the primary and

foreign keys between the tables.

Relationships in Power BI are created using the Manage

relationship option.

Tables can be combined using the Merge and Append

The Merge Query option is used to create join between the

tables. The Append Queries option is similar to Union in SQL. It

simply appends/concatenates one table into another.

From the data model, we can delete the table or choose Hide in

report We can do the same for the fields. The hidden

table/column will not be displayed in the Report view while

creating visualization.

CHAPTER 4

Data Analysis Expressions (DAX)

Introduction

In the previous chapter, we created relationships between the

tables. In this chapter, we will learn about Data Analysis

Expressions We will look at some of the important functions of

DAX. This chapter will explain how to create calculated columns

and measures. It will also cover the aggregation, string,

conditional, and date functions.

As we develop a Power BI application, it is important to learn

why and how to create new columns and measures. A knowledge

of DAX is a must for a Power BI developer, as the formulas

created using DAX will provide more context to the users.

Structure

In this chapter, we will discuss the following topics:

Introduction to DAX

Calculated Column

Calculated Measure

Mathematical Functions

Count Functions

Information Functions

Logical Functions

Filter Functions

Date Time Functions

Variables in DAX Functions

Using Variables in DAX

Objectives

The objective of this chapter is to take a deep dive into the DAX

concepts and functions. We will understand the difference between

the calculated columns and measures. We will learn how to create

new columns and measures using the various DAX functions. We

will also be creating the Date Dimension using DAX and will

further use the variables to simplify the calculations.

Introduction to DAX

DAX is the formula language used in Power BI. DAX is a

functional language and contains a set of functions. The DAX

functions can contain other functions, conditional statements, and

value references. The DAX expressions are created using the

functions which are written in a single line.

DAX has only two datatypes, which are as follows:

Numeric – Integers, Decimals, and Currency

Other – Strings and Binary objects

DAX functions

DAX has some 200 functions; in this section, we will discuss

some of the important functions in DAX. Before looking at the

functions in detail, let's understand what kind of values they

return.

Depending on the type of values returned, every DAX function is

divided into the following:

Scalar Return single values such a number, text, or date. These

values can be used in a visualization.

Table Return a table or values, that is, multiple rows. These

functions cannot be used in visualization as visualizations, expect

a single value such as etc. The table functions can be used in

the DAX queries as an input into the other DAX expressions. They

can also be used in creating tables in the Power BI desktop.

We will explore the different DAX functions. Each function will

have a return value, such as Scalar or Table.

DAX provides a set of functions to create a formula or

expression. The different types of functions are as follows:

Mathematical and trig These functions are similar to the

mathematical and trigonometric functions available in excel. Some

of the functions available are etc.

Logical These set of functions check a conditional expression to

see if it evaluates to TRUE or FALSE. Some of the functions

available are etc.

Information These functions look at a table/column which is

provided as an argument and tells whether the value matches the

expected type. Some of the functions available are IS etc.

Text These functions are string functions and work on the Table

and Columns. Some of the functions available are etc.

Date These functions assist in creating the calculations based on

dates and times. Some of the functions available in this category

are etc.

Filter These functions work with tables and relationships. They

help in manipulating the data context to create dynamic

calculations. Some of the functions available are etc.

DAX helps in creating calculated columns and measures which are

not present in the source data.

Syntax:

DAX works with Table/s and Table columns. The syntax for Table

and Column used in DAX is as follows:

TableName[ColumnName]

If the table name contains a space, the table name is enclosed

within single quotes.

'Table Name' [ColumnName]

The DAX expressions are written in the Power BI desktop. These

expressions can be written either in Report view or Data view.

Calculated Columns and Measures

In DAX, two kinds of calculations are created, which are as

follows:

Calculated Columns

Calculated Measures

Depending on the requirements, we can choose whether to create

a column or a measure.

In this section, we will see when and how to create these

calculations.

Calculated Columns

A calculated column extends the loaded table in Power BI. It is

created by using the DAX formula that is evaluated for each row.

It adds a physical column to the table. This column is created by

using the data already present in the data model.

For example, a Customers table contains each customer's city and

state as separate columns. In the visualization, however, we want

to display (for each row) a concatenation of City-State. To do this,

we will create a calculated column, say and write the following

DAX formula to perform the concatenation:

CityState = CONCATENATE(Customers[City], CONCATENATE("-

",Customers[State]))

This new column will be stored in the table and will be available

in the table field list. Any time the data refreshes, this column

calculation will also be refreshed and provide the updated results.

The properties of a calculated column are as follows:

Calculated columns are created in the Report or Data view.

The values are computed, when the expression is defined or when

the dataset is refreshed.

They are evaluated for each row within the table.

Created calculated columns appear in the field list, just like any

other fields, and are displayed with a special icon.

Once created, they are part of the data model/table in which they

are created, thus, increasing the size of the data model and the

consumption of RAM.

Calculated columns are used to implement the business rules and

use the fields present in the data source tables.

Calculated columns provide a way to add a column in a table.

A calculated column is used when it is not present in the data

source table and its physical representation is required. These

columns should be avoided as they increase the size of the data

model.

Exercise 1:

Create a calculated column – Unit Price

The loaded Orders table present in our data model is missing

Unit Price. We will create the Unit Price column by using the

calculated column functionality; in this way, it will be physically

present in the table.

The steps to create a calculated column named UnitPrice are as

follows:

Use the application Chap3_CreatingRelationships and save it as

From the Power BI desktop, navigate to Data view (or Report

view), and select the Orders table. In this table, we will be

creating a New

From the Home tab, select New as shown in the following figure,

and in the DAX edit window, write an expression.

On the expression window, replace column with Unit Price and

after the = (equals to) sign, type The drop down will display the

list of columns in the Orders table. and then type / and type

Orders again and select

Press Enter after typing the expression.

Figure 4.1: Creating calculated column

The expression should look like the following:

UnitPrice = Orders[Sales]/Orders[Quantity]

In the preceding calculation, UnitPrice is the name of the

calculated column, Orders is the table name, and Sales and

Quantity are the fields in the table

The preceding steps will create a column UnitPrice in the Orders

table. This column will be physically present in the table. We can

verify it under the data preview, fields, or in the data model, as

shown in the following screenshot:

Figure 4.2: UnitPrice column created in Orders table

The UnitPrice column will be displayed in the field list with a

special icon. Whenever a column with such icon is displayed, we

can be sure that a formula is associated with it.

Verify the UnitPrice calculation

We will cover visualizations in much detail in the next chapter. In

this chapter, to verify our calculation, we will create a simple

visualization table. (Refer to the page on Calculated Column in the

enclosed

The steps to verify the UnitPrice calculation are as follows:

Navigate to the Report view. From the list of select

In Fields, from the Orders table, select and as shown in the

following screenshot:

Figure 4.3: Table displaying Unit Price

Using the table visualization, we can verify any calculation in this

chapter.

Exercise 2:

Create a calculated column – City-State

In the Customers table, the City and State of the customers are

displayed in separate columns, we will create a calculated column

to create CityState which will be a concatenation of City and State

and will be displayed as City-State.

The steps to create a calculated column named City-State are as

follows:

(Refer to the page on Calculated Column in the enclosed

From the Power BI desktop, navigate to Data View (or Report

view), select the Customers table. In this table, we will be creating

a New

From the Home tab, select New Column and in the DAX edit

window, write the following expression:

CityState = CONCATENATE(Customers[City], CONCATENATE("-

",Customers[State]))

In the preceding formula, CONCATENATE is a DAX function that

joins two text strings into one string. The second CONCATENATE

is used because we want to display a hyphen (-) in between City

and

This will create a column CityState in the Customers table, as

shown in the following screenshot:

Figure 4.4: CityState column in Customers table

The CityState column will be physically stored in the table, and

therefore will increase the size of the data model.

Calculated measure

The calculated measures are not stored physically in the table, but

rather are calculated on the fly. They are evaluated, based on the

context in which they are used. The way in which they differ from

the calculated column is that they are calculated based on the

context where they are used. They don’t depend on a specific

table, but rather where they are used. A calculated column, on the

other hand, is used within the table, and therefore are physically

stored within a specific table.

We can put a calculated measure in any table, it will not lose its

functionality.

For example, if we create a calculated measure say TotalSales =

SUM(Orders [Sales]).

This measure will calculate on the fly when used in the

visualization or matrix. It will provide the Total of Sales when

used with the different tables and dimensions, such as TotalSales

for TotalSales for etc.

The properties of a calculated measure are as follows:

Calculated measures are also created in the report or data view.

Unlike calculated columns, calculated measures are not stored as

part of the data model. They are calculated on the fly.

Does not increase the size of the data model or RAM overhead.

It is not computed row by row but uses an aggregation function

like Sum around the fields. If row-by-row computation is required,

then the X function iterator, such as SumX, is used.

Created calculated measures appear in the field list, just like any

other fields, but are displayed with a special calculator icon.

They are not displayed in the data preview in the data view.

Calculated measures are suited for calculating percentages, ratios,

and complex aggregations.

Exercise 3:

Create a calculated measure – SalesMeasure

In this exercise, we will create a calculated measure SalesMeasure

in the Orders table, by using Quantity and UnitPrice from the

Orders table.

The steps to create a calculated measure are as follows:

(Refer to the page on Calculated Measure in the enclosed

From the Power BI desktop, navigate to Data View (or Report

view), and select the Orders table.

From select New as shown in the following figure, and in the

DAX edit window, write an expression.

In the DAX expression for a measure, the field names are

enclosed in an aggregation function such as

SalesMeasure = Sum(Orders[Quantity]) * Sum(Orders[UnitPrice])

Figure 4.5: Creating calculated measure

Notice that the calculated column and measure are displayed with

different icons in the following figure:

Figure 4.6: Calculated Column and Measure in Field list

The SalesMeasure column will not be visible in the data preview,

as it is not physically present in the table, but will be calculated

on the fly. The UnitPrice column will be visible in the data

preview.

Quick measures

Quick measures are also used to create calculations. The following

are some of the important characteristics of quick measures:

Predefined calculations provided by Power BI.

Provides different categories of calculations.

We don't write the DAX expressions for these calculations; Power

BI automatically writes DAX based on the input provided.

The DAX code executed for the measure can be seen.

New quick measure, once created, will be available as a column

in the field list and the data model in the table where it is

created.

The new quick measure is available to any visual in the reports.

Quick measures can be renamed or deleted.

Quick measures are a great way to learn DAX because we can

see how the different calculations are written. Power BI provides

various kinds of quick measures. These are available to us like

any other measure calculation, the only difference is that DAX for

these measures is predefined by Power BI, as shown in the

following screenshot:

Figure 4.7: Quick measure categories

Quick measures can also be created from the field list by right-

clicking on any field or selecting the ellipsis next to any field in

the Fields pane.

Creating a Quick measure

From the Power BI desktop, select the table in which you want to

create New and from the Home tab, select Quick measure, as

shown in the following figure:

Figure 4.8: Creating Quick measure

We can also create a Quick Measure from the field list or the

visualization.

Exercise 4:

Create a Quick Measure – Running Total of Sales

In this exercise, we will create a Quick Measure to calculate the

Running total of This calculation will be created on the Orders

table.

The steps to create a Quick Measure for Running Total of Sales

are as follows:

(Refer to the page on Quick Measure in the enclosed

On Data select Orders from the Fields. Click on the ellipsis next

to the Orders table and select New quick measure, as shown in

the following screenshot:

Figure 4.9: Selecting the option for New quick measure

In the next Quick measures dialog box, select Running total from

the Select a calculation drop down.

In the fields, select Orders and drag Sales to the Base value box

and place year on to the field.

Figure 4.10: Creating Quick measure

This will create a Quick measure Sales running Total in Year

under We can also verify it in the Data model. Click on the

measure, and see that Power BI has created a DAX formula. In

the following screenshot, we can see how running total is

calculated:

Figure 4.11: DAX formula using in Quick measure

Quick measure will be available in any other visualization, if you

want to use them. It is a good way to learn DAX too, as it

shows you how the formula is created using DAX.

Mathematical functions

DAX has a range of mathematical functions and they are similar

to the Excel mathematical functions. Some of these functions are

etc.

These functions are also called the aggregate functions, as they

aggregate the values of a column. The aggregate functions work

on numeric values.

Sum

This function aggregate/add all the numbers in a column. Only

one column can be aggregated at a time, such as

The operations involving two columns, such as

Sum(Orders[Quantity]) * Orders[Unit Price]) are not allowed.

Syntax:

Sum(Table [Column])

Returns: Scalar/single decimal value

Exercise 5:

Calculate percentage (%) of Profit

This calculation will use the Profit and Sales columns from the

Orders table.

The steps to calculate the percentage (%) of Profit are as follows:

(Refer to the page on Sum in the enclosed Chap4_Dax)

Use the same application as earlier,

Select Data from and select

From the Home ribbon, select New Type the following expression

in the DAX edit box:

% of Profit = Divide(Sum(Orders[Profit]), Sum(Orders[Sales]),0)

In the preceding calculation, % of profit is a Measure Divide is a

function that divides Orders[Profit] by Orders[Sales], and returns 0,

in case if divided by 0 or blank.

We will see a column % of profit created under the Orders table

with a calculator icon. Select the % of Profit column, and from

the ribbon, select Measure and change the formatting to

percentage with two places of decimals, as shown in the following

screenshot:

Figure 4.12: Percentage formatting

We can also change the formatting of the Profit and Sales fields.

Under the Orders table, one by one, select Profit and Change the

formatting for these columns to Currency and two places of

decimals, as shown in the following screenshot:

Figure 4.13: Formatting of columns

SumX

This function evaluates the sum of an expression for each row of

the table. It performs row-by-row computation over the specified

table. It can work on multiple columns, as follows:

SumX(Orders, Orders[Quantity] * Orders[Unit Price])

Syntax:

SumX(Table,)

Here, Table is the name of the table in the data model or an

expression that returns a table.

Expression is a column that contains the numeric values to be

summed or an expression that evaluates to a column.

Returns: Scalar decimal value.

SumX verses Sum

SumX is called an iterator function. It is similar to Sum() with

certain distinctions, which are as follows:

Unlike SumX will return the sum of an expression computed for

each row in a table.

It is called an iterator function as it works through the entire

table row by row.

Sum() works on a single column but SumX can work on multiple

columns in a table and performs row-by-row evaluation of those

columns.

Sum() and SumX() can give the same or different results based

on the context in which they are being used.

A calculated column performs row-level computation. Such

computations are not possible in calculated measures using Sum(),

but using we can create calculated measure and perform a row-

level computation.

When to use SumX?

Use SumX when the table is in the format of the Orders table

which lists Order Product and Unit as shown in the following

figure:

Figure 4.14: Data from Orders Table

To get the Total Sales for each Order we need to multiply (for

each row) Quantity with Unit In this case, we need to use SumX

as we need to perform a row-by-row computation of the two

columns.

Exercise 6:

Calculate Total Sales for each Order ID

For each row in the Orders table, we need to aggregate the

multiplication of Quantity and Unit

The steps to calculate the Total Sales are as follows:

(Refer to the page on SumX in the enclosed

On the Power BI desktop, navigate to Data From select

With the Data view selected, from the Home tab, select New

Measure and write the following expression in the DAX edit box:

TotalSalesX = SUMX(Orders, Orders[Quantity] * Orders[UnitPrice])

In the preceding expression, TotalSalesX is the name of the

measure, SumX is the iterator function, Orders is the table on

which the calculation will be performed, Orders[Quantity] and

Orders[Unit Price] are the columns in the Orders table used in

the expression.

This will create a column TotalSalesX under the Orders table.

Count functions

DAX provides different count functions which can be utilized in

visualizations. Each count function works differently.

Count

This function counts the number of non-blank rows of a column.

It counts the rows containing values, such as and It skips the

blank rows and cannot count the Boolean values.

Syntax:

Count(Table[Column])

Returns: Scalar whole number value

Exercise 7:

Count the number of orders in Orders table

The steps to count the number of orders are as follows:

(Refer to the page on Count in the enclosed

Follow the same steps that were given earlier; navigate to Data

Select Orders from the fields.

Select New Measure from Write a calculation, as follows:

CountofOrders = Count(Orders[Order ID])

This will create a new measure in the Orders table.

CountA

CountA is similar to the Count function. It counts the number of

non-blank rows of a column. It counts the rows containing values

such as and

The difference between Count and CountA is that CountA can

count the Boolean values, whereas Count cannot.

Syntax:

CountA(Table[Column])

Returns: Scalar whole number value.

Exercise 8:

Using Count and CountA to check the difference between them

To understand this concept, we will load a simple Excel sheet This

XLS is available in the enclosed data files. This has a format, as

shown in the following figure:

Figure 4.15: BooleanVales.xls

The steps to load BooleanValue.xls are as follows:

Load the preceding Excel sheet in the Power BI desktop. Follow

the steps mentioned in the previous chapter on how to load an

Excel file.

This will create a table Digits with one column -

Now, we will create a New BooleanValue column in this table.

In the Data select Digits from the

From select New Create a simple DAX calculation to calculate

(using the Boolean values of True and

BooleanValues = If(Digits[Values] = 1, TRUE(), If(Digits[Values] = 2,

True(), If(Digits[Values] = 7, FALSE(), Blank())))

The preceding expression uses the IF conditional statement. It

says, if the Digits[Values] = then set the new column as if

Digits[Values] = then set the new column as but if Digits[Values]

= then set the new column as false and leave the others as

blank.

This will create a BooleanValues column in the Digits table with

values True and Observe that only two values are True as 1, 2

values are present in the table, as shown in the following figure:

Figure 4.16: Table with calculated measure BooleanValues

Using Count and CountA

Now we will count the values in the column, using the Count and

CountA functions and see the results.

The steps to using Count and Count A functions are as follows:

(Refer to the page on in

With the Digits table selected under navigate to the Home tab

and select New

Use the Count function as shown. This will create a CountBoolean

column under Digits table:

CountBoolean = Count(Digits[BooleanValues])

Navigate to the Home again, and create another New In this

expression, we will use as shown in the following screenshot:

CountBooleanA = CountA(Digits[BooleanValues])

Figure 4.17: Columns in Digits table

Now, verify the expression using

Navigate to the Report view and select a Table type,

Visualizations. From the Digits table, select and Power BI will

display an error, as shown in the following screenshot:

Figure 4.18: Error when using Count on Boolean values

Now, verifying the expression using Close the preceding error and

remove the chart. Select the Table visualization again, and this

time use and

You will get the correct values. This is because CountA can count

the Boolean values, as shown in the following screenshot:

Figure 4.19: Table visual with CountBooleanA

CountX

CountX is similar to the CountA function, but counts the non-

blank values when calculating the result of an expression. It

iterates the rows of the table and counts the rows where the

input expression results in a non-blank output.

For example, if the table contains ten rows out of which four

rows are blank, then using the CountX function, it will count up

to six as, it will only count the non-blank rows.

Syntax:

CountX(Table, expression)

Returns: Scalar integer value.

CountAX

CountAX is similar to the CountX function; it counts the non-

blank results when calculating the result of an expression. It

iterates the rows of the table and counts the rows where the

input expression results in a non-blank output.

The difference between CountAX and CountX is that CountAX can

operate on the Boolean datatype, whereas CountX cannot do that.

Syntax:

CountAX(Table, expression)

Returns: Scalar whole number value.

CountBlank

CountBlank counts the number of blank values in a column. If the

rows do not meet the criteria, blanks are returned.

Syntax:

CountBlank(Column)

Returns: Scalar whole number value.

CountRows

The CountRows function counts the number of rows in a table.

Syntax:

CountRows(Table)

Returns: Scalar whole number value.

Power BI provides a variety of Count functions, which can be

used in different scenarios.

Information functions

DAX contains a number of Information functions. These functions

check the value or row that is passed as an argument and

returns true/false or an alternate value if the value matches the

expected type. In this section, we will look at some of these

functions.

ISERROR

This function checks if the value or expression results in an error.

ISERROR()

True, if the expression or the value is an error, else false.

Exercise 9:

Create a calculation to divide SalesMeasure by CountofOrders

If error occurs, return 0, or else, return the output of the

expression.

On the Orders table, create a calculated column to divide

SalesMeasure by ISERROR will check for the divide by 0 error. If

the error occurs, it will return 0, otherwise it will return the

output of the calculation.

The step to use the ISError function is as follows:

(Refer to the page on Information Functions, enclosed in

From the Data select the Orders table and create a New Measure

using the following expression:

DivideByZero = if

(ISERROR(Orders[SalesMeasure]/Orders[CountofOrders]),0,

[SalesMeasure])

USERNAME

This function returns the domain name and username of the

logged in user. It can be used only with the calculated measure.

Syntax:

USERNAME()

User logged into the application.

Exercise 10:

Identify the current user using the application

On Data select the Orders table and select New Measure from

the Home tab. Create a new measure with the following DAX

expression:

CurrentUser = USERNAME()

This expression will return the current user using the application.

We can test by using this expression in a table visualization.

LOOKUPVALUE

The LookUPValue function is an important DAX Information

function. It can be used for the Data model cleanup. One of the

used cases is when we have a table with only two columns such

as ID and and it can be merged to the main table.

Syntax:

LOOKUPVALUE(, , ,)

Returns: The result_columnName for the row that meets the

criteria specified by the search_columnName and search value.

If there is no match that satisfies the search values, a blank is

returned.

The for the LookUpValue function is as follows:

The column name of a table that wished to be returned. The

column name must be qualified with the table name and cannot

be an expression.

The lookup column name in the same table as the

result_columnName or in a related table. The column name must

be qualified with the table name and cannot be an expression.

The column name or value used compare with

search_columnName to return

This is an optional result value, if no values are returned in If

this is not specified, BLANK is returned.

We will use the LookUpValue function to load the columns from

one table into the main table.

LOOKUPVALUE – SalesPerson_Location and Sales Person Table

The SalesPerson_Location table contains only two columns,

SalesPersonID and It is in relationship with the Sales Person

table. Based on the we can load the Location in the Sales Person

table.

The steps to load Locations from SalesPerson_Location to the

Sales Person table are as follows:

On the Power BI desktop, navigate to Data From Fields on the

right, select the table. In this table, we will be creating a column

for

From the Home tab, select New Column and complete the

following steps:

In the formula bar, give the new column a name as Location and

after the = symbol, type Power BI will display the syntax.

Enter Result_ColumnName as Pick the Table.column name from

the drop down.

as SalesPersonID because we want Location based on that.

as Sales Person[SalesPersonID].

Press Enter after specifying the formula.

The complete formula will look like the following:

Location =

LOOKUPVALUE(SalesPerson_Location[Location],'SalesPerson_Location

'[SalesPersonID],'Sales Person'[SalesPersonID])

Figure 4.20: Creating Location column using LOOKUPVALUE

This will create the Location column in the Sales Person table. We

can verify it by navigating to the model view.

The preceding operation is performed using LOOKUPVALUE and

implies the following:

Create the Location column in the Sales Person table, populate it

with the Location column from the SalesPerson_Location table by

matching the values of SalesPersonID in the SalesPerson_Location

table and SalesPersonID in the Sales Person table.

Hiding the redundant tables:

Review the data model, notice that the SalesPerson_Location table

is no longer required, as the field it contained is now loaded in

the Sales Person table. This table is now redundant and can be

hidden from the data model.

Right-click on the SalesPerson_Location table, you will see two

options at the bottom, Delete from model and Hide in report

view, as shown in the following figure:

Figure 4.21: Delete and Hide options

We can either hide the table or delete it from the model. If Hide

in report view is selected, this table will be visible as greyed out

in the Data view, but will not be visible in the Report view.

Select Hide in report view as this table will no longer be required;

the result will be shown in the following screenshot:

Figure 4.22: SalesPerson_Location hidden from the Report View

The Lookup function can be used to reduce the number of tables

in the report view.

Logical functions

DAX contains a variety of logical functions. These functions allow

us to test if the condition in an expression evaluates as true or

false. In this section, we will look at some of these functions.

If

This function checks the condition in an expression. It returns one

value if the condition is true and returns another value if the

condition evaluates as false. For multiple conditions, you can use

the nested

Syntax:

IF (, value>, value>)

Value of the expression.

Exercise 11:

Create a Timezone column in the Sales Person table

Sales Persons are located in different locations. We can create a

new column in the table to show their time zones.

In this example, we will use only few time zones and will leave

the others as blank.

We can store the following time zones in the new column:

Ohio, Florida in EST,

Illinois in CST,

Since we have multiple conditions, we can use the nested

The steps to create the TimeZone column in the Sales Person

table are as follows:

In the Data view, select the Sales Person table, and from the

Home tab, select New

Enter the following DAX expressions:

Time Zone = If('Sales Person'[Location] = "Ohio", "EST",If('Sales

Person'[Location] = "Florida","EST", If('Sales Person'[Location] =

"Illinois","CST")))

In the previous expression, the If condition states that if Sales

Person Location is Ohio, then store EST as the value in the new

column; if Sales Person Location is Florida, then store EST as the

value in the new column; if Sales Person Location is Illinois, then

store CST as the value in the new column.

After executing this expression, in the Data view, check the Sales

Person table for the new column Time

And

This function tests whether both the conditions are true. It returns

True if both the conditions are true, or else it returns false.

Syntax:

AND (expression 1>,expression 2>)

Returns: True or false based on the tested condition.

Exercise 12:

Find Good and Bad Orders by Sales

Suppose, we want to check which Orders are good or bad, based

on Sales and We want to label the Orders with Sales greater than

1000 and % of Profit greater than 10% as Good If this condition

is not met, we want to label those orders as bad.

Since we are checking two conditions, we can use

The steps to Find Good and Bad Orders by Sales using AND are

as follows:

(Refer to the page on enclosed in

Create a New Column on the Orders table, and use the following

DAX expression:

GoodBadOrders = If(AND(Orders[SalesMeasure] > 1000, Orders[%

of Profit] >.1), "Good Order","Bad Orders")

This expression uses both IF and AND functions.

Create a table visualization, and from the Orders table, select

Order Sales % of and the calculation we created earlier for

GoodBadOrders, as shown in the following screenshot:

Figure 4.23: Table visual with GoodBadOrders

Switch

Evaluates an expression and returns the options based on the

evaluated value. It is similar to IF but IF only returns True or

False unless it is a nested The Switch function removes the use

of nested IFs and returns multiple values based on the expression.

Syntax:

SWITCH(, , 1>, , 2> …, result>

Returns: A scalar value from the evaluated results.

Exercise 13:

Create a New column for the month names from Order Date in

the Orders table

The steps to create the month names from Order Date are as

follows:

(Refer to the page on LogicalExpressions in the enclosed

Select the Orders table, and create a New Column using the

following DAX expression:

OrderMonth =

Switch(MONTH(Orders[Order Date]),1,"Jan",2,"Feb",3,"Mar",4,"Apr", 5,

"May", 6, "June", 7, "July", 8, "Aug", 9, "Sept", 10, "Oct", 11,

"Nov", 12, "Dec", "Invalid month number")

In the Data check the Orders table for the OrderMonth column.

Switch is similar to IFs but avoids the use of nested IFs

The other functions under this category are as follows:

This returns the first expression that evaluates to a value. If all

expressions evaluate to a Blank, then Blank is returned.

This returns the logical value

This returns the logical value

This computes an expression and returns a mentioned value if the

expression returns an error, otherwise returns the value of the

expression.

This returns the logical opposite of the value computed by an

expression. If the value in the expression returns the NOT

function will return false and vice versa.

Tests if one of the logical expression is The function returns false

if both the arguments are false.

The logical functions help is creating a new column based on

conditions. They can be nested too, as we saw in the example

using IF and

Filter functions

The filter functions in DAX are very powerful. These functions

work on Table and relationships. There are a number of Filter

functions that help in creating dynamic calculations.

Some of these functions are described in the following section.

Filter

The Filter function is also called a Table function as it returns a

table based on the filter condition. The Filter function is used

with the other functions that take a table as an input.

Filter is not used as a standalone, but as a function that is

embedded in the other functions that require a table as an

argument.

Syntax:

FILTER (Table, condition>)

Here, Table is the table to be filtered. It can also be an

expression that outputs a table. Filter is a Boolean expression that

filters/limits the rows of the table.

Returns: A table containing the filtered rows.

We will see an example of the filter function with the Calculate

function in the following section.

Calculate

It evaluates an expression in the context of the applied filters. It

returns a single value of the expression modified by the filter. If

the data has already been filtered, the function removes any

existing filter and applies the filter provided in the filter

expression.

Syntax:

CALCULATE (, expression 1>, expression 2>…)

Here, the first attribute is the one to be evaluated. It is basically

a measure and will require an aggregate function. The second

attribute, the Filter expression can be a Boolean expression or

table expression that defines a filter. The function first evaluates

the filter, then the expression.

Returns: The value as evaluated by the expression.

Exercise 14:

Calculate Sales for the Year 2018

This calculation will use the filter function too.

The steps to calculate the Sales for Year 2018 using the Calculate

and Filter functions are as follows:

(Refer to the page on Filter_Calculate_All in the enclosed

On Data select the Orders table and from the select New

Create a new measure with the following DAX expression:

Sales for 2018 = CALCULATE(Sum(Orders[Sales]),FILTER (Orders,

Year(Orders[Order Date]) = 2018))

In the preceding expression, calculate is evaluating the expression

based on the Filter Order Date = 2018.

To verify this function, select a Table From the Orders table, select

Sales and Sales for 2018

Figure 4.24: Table depicting Sales 2018

The preceding expression uses the Filter function to get Year =

CalculateTable

The CalculateTable function is similar to Calculate() but returns a

table. It determines a table expression modified by the given

filters.

Syntax:

CALCULATETABLE(Table, filter 1, filter2…)

Here, Table is the table or the expression that returns a table.

The filter expression can be a Boolean expression or table

expression that defines a filter. It cannot use a nested calculate

function or an aggregate function.

It can use any function that computes a single/scalar value. The

function first evaluates the specified filter/s.

Returns: A table containing the values.

The CalculateTable function works exactly the same as the

Calculate function but returns a table of values, that is, it will

return multiple rows as compared to just one/scalar value as in

the previous example using

Exercise 15:

Calculate Sales for all the Years

For this exercise, we have to use the CalculateTable function.

The steps to calculate Sales for all the Years are as follows:

(Refer to the page on Filter_Calculate_All in the enclosed

On Data select the Orders table and from the select New

Create a new measure with the following DAX expression:

Sales for All Years =

SumX(CALCULATETABLE(Orders),Orders[Sales])

In the preceding expression, the CalculateTable measure is used

because we want it to return multiple rows of Sales for all the

years.

Put this column in the previous table that we created (using and

see the difference.

Notice that the CalculateTable calculation returned multiple rows

for each of the years.

Figure 4.25: Calculate calculation result

The difference between Calculate and CalculateTable is that one

returns a Scalar value while another returns a table.

Optional example:

As another example of use the following expression:

Sales for Qty > 1 =

SumX(CALCULATETABLE(Orders,Orders[Quantity] > 1),Orders[Sales])

This expression will return Sales for where Quantity is greater

than 1.

ALL

The ALL function ignores any applied filters and returns all the

rows in a table or all the values in a column. This function

releases all the filters on a table or column and creates a

calculation on all the rows in a table.

This function is used in conjunction with the other functions.

Syntax:

ALL(Table, column1,column2…)

Here, table is the one from where the filter needs to be removed.

Similarly, the column is the column in the table from where the

filters will be removed.

Returns: A table or column without any filters.

Variations of All ()

All functions can be applied in different ways, which are as

follows:

This removes filters from the entire application.

This removes all the filters from the mentioned table.

AllExcept(Table, This removes all context filters in the specified

table, except the filters that are applied to the specified columns.

Exercise 16:

Calculate Sales of all the Orders in the dataset

The steps to calculate Sales for all the Orders using ALL() are as

follows:

(Refer to the page on Filter_Calculate_All in the enclosed

From Data select the Orders table and from select New

Create a new measure using the following DAX expression:

TotalSales All = CALCULATE(Sum(Orders[Sales]),All())

In this expression, ALL() removes all the filters if present in the

visualization. It will always give the TotalSales of all the

irrespective of the filters applied in the visualization.

To verify the preceding calculation, create a Table

Select Order and We will get different values for Sales but

TotalSales All will return the same value as it is calculating the

Sales for the entire dataset. The different order IDs have no effect

on it, as shown in the following screenshot:

Figure 4.26: Using ALL

Related

The related function returns a column value from a related table.

It is used to fetch the column that is not present in the current

table but in another related table. It is similar to VLookup in

Excel.

The Related function uses two tables, the current table and the

second table in relationship with the current table. The function

follows an existing many-to-one relationship between the tables. It

requires row context, and therefore can be used with the

calculated column or the SumX functions.

Syntax:

RELATED()

Here, the column is the column in a table whose value you want

to retrieve.

Returns: A value that is related to the current row.

Exercise 17:

Divide Sales in SalesTarget table with Units in SalesPerson table

To perform this operation, the Related function will be used

between the two related tables – Sales Person and Sales

For this example, we will first create a new column Units in the

Sales Person table for each of the It will contain the Unit values

for each For example,. If SalesPersonID = then Unit = 100 and so

on.

The steps to create Units column in Sales Person are as follows:

(Refer to the page on Related in the enclosed

On Data select the Sales Person table and from the select New

Create a new column using the following DAX expression:

Units = If('Sales Person'[SalesPersonID] = 1,100,If('Sales

Person'[SalesPersonID] = 2,200, If('Sales Person'[SalesPersonID] =

3,300,If('Sales Person'[SalesPersonID]=4,400,If('Sales

Person'[SalesPersonID]=5,500,If('Sales

Person'[SalesPersonID]=6,600,If('Sales

Person'[SalesPersonID]=7,700,If('Sales

Person'[SalesPersonID]=8,800,If('Sales

Person'[SalesPersonID]=9,900,If('Sales

Person'[SalesPersonID]=10,1000,If('Sales

Person'[SalesPersonID]=11,1100,If('Sales

Person'[SalesPersonID]=12,1200))))))))))))

This will create a new Units column in the Sales Person table.

Using Related:

Now we will create a New Measure in the Sales Person table.

This measure will divide Sales in the SalesTarget table with Units

in the Sales Person table.

Use the following DAX calculation:

RelatedSales = SumX(SalesTarget,SalesTarget[Sales]/RELATED('Sales

Person'[Units]))

Since the Sales Person and SalesTarget tables are in a Many-to-

One relationship, we can use the Related function to get the

values from these two tables.

In the previous expression, SumX() is used as row-by-row iteration

of the table was needed.

To verify the preceding calculation, create a table visualization.

From the Sales Person table, select and Related From the Sales

Target table, select as shown in the following screenshot:

Figure 4.27: Output of Related function

The Related function allowed the use of columns from the two

related tables.

RelatedTable

This function evaluates to a table filtered to include the rows as

per the current related table. It works in a One-to-Many direction

of the relationships between the table.

The difference between Related and RelatedTable is that Related

works in Many-to-One direction and RelatedTable works in One-to-

Many direction.

Syntax:

RELATEDTABLE(Table)

A table of values.

Values

The Value function accepts a column or a table as an input.

When a column is passed, it returns a one-column table that

contains the unique values of the specified column. A blank value

is added to the values.

When a table is passed as an input, it returns the rows of the

table. The returned rows can have duplicates and blanks.

It is used as an intermediate function or nested in a formula, to

get a list of distinct values.

Syntax:

Values(or Column>)
Returns: A single column table when the input parameter is a

column.

When the input parameter is a table name, a table of the same

column is returned.

Exercise 18:

Find the unique Customers in the Orders table

The Customer table stores all the customers; there may be

customers who have never made any purchase. The Orders table

will contain the Customers who made a purchase. Some

customers may have made multiple purchases; using the Values

function, we can find the unique Customers in the Orders table.

The steps to find the unique Customers in the Orders table are

as follows:

(Refer to the page on Values in the enclosed

Select the Orders table and create New Measure using the

following expression:

CountOfUniqueCustomers =

COUNTROWS(VALUES(Orders[Customer ID]))

Create a table visualization, from the Orders table, select

CountofOrders (we have created this calculation earlier using

and as shown in the following screenshot:

Figure 4.28: Comparing Count and Values functions

We can see that though the count of orders is the unique

customers are only This means that some customers have

made more than one order.

Date and time functions

These functions are used in creating calculations based on

dates and time. Some of these functions are described in the

following sections.

Calendar

This function returns a table with a single column named It

creates a table with a continuous set of dates. The range of

dates is between the start date and the specified end date,

inclusive of those two dates.

The advantage of the Calendar function is as follows:

This function is useful when we want to create a separate

DateDim table in the data model from the existing date field

in the fact table.

The fact table will contain only the dates when a transaction

occurs, but creating DateDim using Calendar() will give a

table all the continuous dates between the specified Min and

Max dates.

Syntax:

CALENDAR(,)

A table with a single column named

Exercise 19:

Create a DateDim table in the data model using Order Date

from the Orders table

The steps to create a DateDim table are as follows:

(Refer to the page on Date in the enclosed

Select Data View and from the Home ribbon, select New

Use the following DAX expression:

DateDim = CALENDAR(Min(Orders[Order

Date]),Max(Orders[Order Date]))

In the preceding expression, Start_Date and End_Date are

specified using the Min and Max of Order

This will create a DateDim table in the data model. It will

have just one field Notice that Power BI automatically creates

a Date hierarchy with the following columns, as shown in the

following screenshot:

Figure 4.29: Date Hierarchy

In the Report create the table visualization and select fields

from

The fields under the Date hierarchy can be used in

visualization as any other fields.

DateDiff

The DateDiff functions return the difference between the two

specified dates.

Syntax:

DATEDIFF(, ,)

Here, Start_Date and End_Date can be any two dates and the

interval is the format in which the difference of the dates is

returned. It has the values such as, Second, Minute, Hour,

Day, Week, Month, Quarter, and Year.

Returns: The count of the interval between the two dates.

Exercise 20:

Find the time taken to ship the Orders

The steps to calculate the time taken to ship the Orders are

as follows:

(Refer to the page on Date in the enclosed

From Data select and from the select New

Use the following DAX expression to find the difference

between ShipDate and

DaysToShip = DATEDIFF(Orders[Order Date],Orders[Ship

Date],DAY)

The previous expression returns the difference between

OrderDate and ShipDate in Days as specified in the interval

argument.

In the Report view, select the table visualization and from the

Orders table, select Order ID and

Variables in DAX expressions

The use of variables in an expression can make the

expression more efficient. The variables can be used in the

nested functions where a calculation is reused. A variable

helps in the following:

Performance

Readability

Debugging

The variables help in understanding a complex calculation.

VAR statement

The variables are implemented using the VAR statement. VAR

declares a variable which stores the result of an expression.

This variable can then be passed as an argument to the

other measures.

Syntax:

VAR =

Return

VAR is the statement declaring the variable An expression is

computed and stored in the named The Return statement

returns the result of the expression which uses the named

variable.

A named variable which holds the result of an expression

The points to remember when using VAR are as follows:

An expression can contain other VAR declarations.

The measures cannot refer to the variables defined outside

the measure expression, but can refer to variables defined

within the expression.

The columns cannot be referenced via the

TableName[ColumnName] syntax.

The variables are useful in writing complex DAX expressions.

Exercise 21:

Calculate of Sales for 2018 using variable

The following calculation was mentioned earlier in the

Calculate function:

Sales for 2018 = CALCULATE(Sum(Orders[Sales]),

FILTER(Orders,Year(Orders[Order Date]) = 2018))

The steps to Calculate Sales for 2018 using Variable are as

follows:

(Refer to the page on Variable in the enclosed

Select the Orders table and from the select New

Write the following DAX expression to define and use

variables:

VarSalesAmt =

VAR FilterSales2018 = FILTER (Orders, Year (Orders [Order

Date]) = 2018)

Return

CALCULATE(Sum(Orders[Sales]),FilterSales2018)

In the preceding calculation, a variable named FilterSales2018

is defined as follows:

VAR FilterSales2018 = FILTER (Orders, Year (Orders [Order

Date]) = 2018)

It is then used in the Calculate function.

This will create the VarSalesAmt measure.

In the table visualization, use Year and both the calculations,

Sales for 2018 and They both will display the same result, as

shown in the following screenshot:

Figure 4.30: Calculation using Var

The variables can be very useful when complex calculations

are created.

Conclusion

In this chapter, we learned how to use DAX to extend the

functionality of the Power BI application. The DAX formulas

are useful in creating new columns and measures. We also

learned the use of various aggregations. These aggregations

are useful in providing summarized values to the business

users.

This chapter provided a direction in using DAX; as you use

more of these functions in your applications, you will become

more efficient. It takes practice and a deep understanding to

become an expert in DAX.

In the next chapter, we will learn how to create the different

types of visualizations. These visualizations will be the bar,

line, pie charts, and more. The users only see the

visualizations, and so whatever we have done so far will help

in creating meaningful visuals.

Questions

What is the key difference between a Calculated column and

a Calculated measure?

What is the difference between Sum and

To count the Boolean values, which function is more suitable,

Count or

Which function is used to remove all the filters?

Which function is used to get the unique values of a column

in a table?

Why are the Calculated columns not stored in the Measure

table?

Given the start and the end dates, which function is used to

create continuous dates?

Answers

Calculate column is a physical field in the table and is part

of the data model. Calculated measure is not a field in the

table and is calculated on the fly.

Sum aggregates all the values of a column. It does not

perform a row-by-row computation. SumX is called as an

iterator function and performs a row-by-row aggregation.

CountX.

All().

Values.

Calculated columns are part of the table in the data model. It

is a physical field in the table, and hence depends on the

table where it is created. Calculated measure, on the other

hand, is not part of the table and can be created anywhere.

Calendar.

CHAPTER 5

Visualizations in Power BI

Introduction

In the previous chapter, we got an in-depth knowledge of the

DAX functions and understood how they can be used. In this

chapter, we will learn how to create the different visualizations

in Power BI. The data model that we created in the previous

chapters will be used while creating visualizations.

The knowledge of creating visualization is important because

these visualizations will be consumed by the business users

to understand the data.

Structure

In this chapter, we will discuss the following topics:

Understanding Visualizations

Introduction to Power BI reports

Creating multi-page report using visualizations

Filters

Creating visualizations

Formatting

Natural Language Q&A

Drill through reports

Objectives

The objective of this chapter is to understand the concepts of

visualizations in a Business Intelligence application. We

understand and create different kinds of visualizations to get

data insights. We will also learn how to use variables to

create complex calculations.

Review the data model

This chapter will use the enclosed In the data model, tables,

such as Digits and are removed as they were used only for

example purposes. Before creating any visualization

application, it is a good practice to get familiar with the

underlying data model, as shown in the following screenshot:

Figure 5.1: Data model to be used for Visualizations

Understanding visualization

Visualization or data visualization is a visual representation of

data that helps in the better understanding of data. It is a

pictorial depiction of the data in terms of charts, tables, and

maps which provide insights into the data and enables the

business users to make actionable decisions.

A huge amount of information can be communicated

efficiently by using visualizations. It shows the relationship

between one or more data elements and defines the trends

and patterns. Since visualization depicts the data, it is

important that the source data is clean and free of any

anomalies. We performed the data loading and transformation

exercises in the previous chapters.

The examples of data visualization are the bar chart, line

chart, stack chart, etc. Visualizations contain dimensions or

measures. In most of the cases, it will contain both the

dimensions and the measures.

Introduction to Power BI reports

The report view in the Power BI desktop is used to create

Reports. Reports contain one or more visualizations. These

reports can be of a single page or multi-pages. The

visualizations in a report are interactive and respond to filters

and underlying data changes. In a report, we can move

around these visualizations or copy and paste to create the

other similar ones.

Sometimes reports are referred to as dashboards and vice

versa. The difference between the two are as follows:

Reports can be of multiple pages, but Dashboards are of a

single page.

Reports are created using the Power BI desktop and Power

Service. Dashboards are created only in Power Service.

A Dashboard is created by pinning visualizations from one or

more Reports.

Reports can have filters and responds to different kind of

filters. A Dashboard does not contain filters.

If the underlying data changes, the report reflects the change.

If the Report sourcing the Dashboard changes, the Dashboard

does not change automatically.

Both the Reports and the Dashboards present the data

visually. Dashboard usually contains a summarized, single

page data. Reports can be detailed and multi-page.

How to create a Report?

The following figure is the depiction of the various steps

required to create a visualization in a report. Click on the

Report view on the left to invoke the Report Editor:

Figure 5.2: Report development interface

The following are the descriptions for the marked numbers in

the preceding figure:

#1 Report canvas, here the visualizations are created and

displayed:

When a visualization is selected (from a placeholder of it is

created on the canvas. At the bottom of the screen, the page

tab Page2 show the pages of the report. A single page report

can have one of more interactive visualizations and a report

can be of multiple pages. Select the visualization to see the

options in the filters, fields, etc.

We can also copy and paste a visual by right-clicking on it

and selecting Copy | Copy visual, as shown in the following

figure:

Figure 5.3: Copying a visual

#2 Depending on the business requirements, pick the

visualizations from the list, as shown in the following

screenshot: To create a visualization, select one and it will be

displayed on the report canvas as a place holder. Hovering

the mouse over a visual, displays its name:

Figure 5.4: List of Visualizations

#3 The various fields or calculations can be selected to be

displayed on the visualization, as shown in the following

screenshot:

Figure 5.5: Select fields to display in Visualizations

#4 Fields, Format, and The fields option is used to display

the fields on the visualization. It displays the values on the

visualization, such as x-axis, Y-axis, legends, etc. To remove a

field from the visualization, simply remove it from here by

using the X on the field.

Following is the section for the field placement on the visual.

It also provides the options for formatting and analytics, as

shown in the following figure:

Figure 5.6: Fields, Format and Analytics

The next roller pin option is the Formatting option. It is used

to provide formatting to the visualization, such as color, font

size, etc. The Magnifying glass option, is used to display the

Analytics pane. It is contextual and displays the options based

on the type of visualization selected.

#5 The Filter pane is used to limit the data in the

visualization. Filters can be set to filter a specific page or all

the pages in the report. The fields not present in the visual

can also be used as a filter. There are different types of

filters. Filters can be used on a single visual or on an entire

report.

The Filters pane provides the different ways to filter the data

in the visual, as shown in the following figure:

Figure 5.7: Filters

The steps to create visualizations in the Power BI desktop

and Power BI service are the same. You can follow the same

steps to create a visualization in either application. The

difference is that in the Power BI service, you will not have

access to modify the data model.

Creating multi-page reports using visualizations

In this section, we will learn about creating reports in Power

BI that includes filters, slicers, and the different types of

visualizations.

Use the previously created Chapter4_DAX and save it as

Remove the tables, Digits and DateDim as they were used

only to explain some concepts in DAX.

Remove any pages or visualizations

To remove a visualization, select the visual and click on the

… symbol for more options and select as shown in the

following screenshot:

Figure 5.8: Removing the visualization

Alternatively, you can also use It has a PBIT extension. When

you open this application, it will ask for a parameter value.

This parameter was created when we loaded the CSV files

from a folder in Chapter 2, Connect and Select the default

value and click on load.

This will load all the tables in your data model. The Power BI

templates will be covered later in this chapter. To display the

data in different ways, Power BI has a wide variety of charts.

Each chart will be used for the specific data needs. To create

a visualization, we will need a dimension or a metric value

which will be displayed over the x-axis and y-axis.

Card

A card displays a single value of the data element. It can be

used to display the total value of a measure.

We will use the card visual to display the total number of

and Total The advantage of using a card is that the business

users and executives can get a quick glance of the important

KPIs of the company.

Exercise 1:

Display count of orders, customers, and total sales using card

visualization

The steps to create a Card visual are as follows:

(Refer to the page on Card in

Click on the Report From the select as shown in the

following screenshot:

Figure 5.9: Selecting the Card

This will create a place holder of the card.

From using the Orders table, select Order

Fields: The following is the list of visualizations, Order ID will

show up under the Click on it to make sure that it uses

Count as summarization, as shown in the following

screenshot:

Figure 5.10: Count of Orders

With the chart selected, next to Fields, use the roller-pin icon

to set the formatting of the visual. Navigate through the

different settings and change them one by one. To make any

changes, remember to select the chart first.

Under Data set the color as black, Display units as the value

decimal places as 0, Text Size as 30 and Font family as

Trebuchet

Turn the Category off to remove the default caption of of

Order

Turn Title to on by clicking on it. Use the Title text as # of

Orders with Text size as 24 pt. Set its alignment to center

and the Font family as Trebuchet

On the canvas, reduce the size of the card from the corner,

as shown in the following screenshot:

Figure 5.11: Reducing the size of the visualization

There are many properties which you can explore and set as

per your requirement.

Copy/Paste a visual

Now to create the other cards for the # of Customers and

Total copy and paste the preceding visualization.

Right click on the # of Orders visualization and select Copy

and select Copy as shown in the following screenshot:

Figure 5.12: Creating copies of the visual

From the Home ribbon, select Select Paste twice to create

two copies of the same visual. Drag the copies of the visuals

and lay them separately on the canvas.

Creating # of Customers card

Select the second visual which we just copied and pasted.

From under the Orders table, select Customer ID and place it

over the fields (below the list of visualizations). Make sure

that the aggregation is Count distinct.

Change the title to # of

Creating Total Sales card

Select the third visual which we just copied and pasted.

From under the Orders table, select Sales and place it over

the fields (below the list of visualizations).

Use the roller-pin to change the formatting. Under Data set

the Display units to millions and the value decimal places to

2. Change the title to Total as shown in the following

screenshot:

Figure 5.13: Displaying the totals.

The cards are used to provide the summary of KPIs:

Placing the image: We will place an image/logo on the

dashboard, for which, the steps are as follows:

Navigate to the Insert ribbon and select Browse to your

enclosed images folder and select an image you want to put

on the dashboard.

Resize the image and place it on the left-hand corner.

The visualizations created on Page1 of the report so far will

appear on your screen as shown in the following figure:

Figure 5.14: Cards and Logo

Right now, the measure on the three cards displays the

numbers for the entire data set. If we place the fields, such

as Order Date on the these numbers will change accordingly.

We will cover filters in the subsequent sections in this

chapter.

Remember, to make any changes to the visualization, it

should be selected first. Once the visual is selected, you will

see the properties for Fields, Formatting, etc.

Bar chart

The Bar charts are used to compare values of unique

categories. Bars can be displayed vertically, horizontally, or can

be stacked. The length of the Bar displays the value of the

category they represent.

The legends on the chart displays additional dimension as

color.

Exercise 2:

Create a Stacked Bar chart to display Sales for different Years

and Region

The steps to create a bar chart are as follows:

(Refer to the page on Card_Stacked Bar Chart in the enclosed

With the report view selected, on page 1, from Visualizations,

select the first chart – Stacked bar chart.

With the bar chart place holder selected on the canvas, select

the following fields from Orders – Year from the Order Date

hierarchy, and from the Customers table, select and make the

changes, as shown in the following screenshot:

On axis, place Order Date/Year from the Orders table.

On place Sales from the Orders table, This will create a bar

chart with bars of the same color.

On from the Customers table, place This will produce

different colors of bars for each of the

Figure 5.15: Fields for the bar chart

Formatting: With the bar chart selected on the canvas, select

the roller-pin icon to set the formatting.

Make the following changes:

Position – Right

Color – Black

Font – Trebuchet MS

Text size – 12 pt

Y-axis

Color – Black

Text size – 12 pt

Font family – Trebuchet MS

Turn the title off

X-axis

Color – Black

Text size – 12 pt

Font – Trebuchet MS

Turn the title off by clicking on it

Data labels

Display units – Millions

Title

Title text – “Sales by Year and Region". The formula section

denoted by fx allows you to formulate the custom titles.

Size - 14 pt

Alignment – Center

Font – Trebuchet MS.

Data color

Use the data color property to choose the desired colors.

After all the formatting changes, the bar chart will appear like

the one as shown in the following figure:

Figure 5.16: Stacked Bar chart

There are a lot of formatting options that you can explore,

and select as needed.

Filters and Slicers

When creating the preceding visuals, you might have noticed

that the fields used in creating the charts, automatically

appear in the filter panel.

The data displayed in the charts is controlled by filters and

slicers. Filters and slicers, both are used to display or limit

the data in the visualizations based on the following

selections made:

Filters are contextual. When visualization is selected on the

canvas, it shows the visual filters and displays the fields used

in the visualization as filters. If the visualization is not

selected, only the page level filter option is displayed.

Filters are created by placing the fields in the Filter pane. The

users make their selections in the filter pane to see their

desired data.

Filters are of various types, such as visual level filters, page

filters, report filters, and drill through filters.

Slicer is similar to Filters and is available in the list of

visualizations. It is placed on the canvas like any other

visualization.

Slicers can be synced too. Navigate to the View ribbon and

select the Sync slicers option.

We can use Filter or Slicer in the report. Filters and Slicers

have similar functionality. Filters will work in most cases, but

in situations where you want to filter the data on specific

pages, slicers may be more useful.

Depending on the field used as filter, it can have different

options, such as the following:

Basic filtering: In basic filtering, the users can select the

actual values of the field. You can select all the values or the

specific ones. In the preceding bar chart, Region is used as a

filter.

Under Basic filtering, the values displayed are shown in the

following figure:

Figure 5.17: Basic filtering

By default, it is One or multiple values can be selected. If a

single select is required, then check Required single This will

allow the users to pick only one value of the

Advanced filtering: This option gives the users a wild card

selection, that is, the advance filtering option is used to filter

the visual with the wild card selection, such as when the data

element contains or does not contain certain values, and the

options can have values such as Ea* to get the chart for

Region as shown in the following screenshot:

Figure 5.18: Advance filtering

Top This filter condition is used to find the top or the

bottom performing records. Say for example, we have created

a table using the columns, Order ID and From the list of

values, we are interested in finding the Top 5 sales record. In

this case, we will use the Top N filter and select Apply as

shown in the following screenshot:

Figure 5.19: Top N filter

Use the Show items dropdown to find the Bottom performers

as well. It can have any integer; in this example, we have

specified Top 5.

Creating Filters in all the pages

In our reports, Year and Month should be used as filters in

all the pages.

To do this, we will create Filters in all the pages. To create

this filter, from the drop the Year and Month fields into

Filters on all the pages. Use the Basic filtering option in the

filters, as shown in the following screenshot:

Figure 5.20: Filter on All Pages

The filters for Month and Year will be displayed in all the

report pages. Any number of filters can be created by placing

the desired fields in the Add data fields

We can create multiple visualizations on the same report; in

this book, for the sake of clarity, we will create them on

separate report pages.

Line chart

Line chart is best suited for displaying the trends of data

over a period of time.

Exercise 3:

UseLine Chart to display Yearly trend of Sales by Category

The steps to create a Line Chart are as follows:

(Refer to the page on Line Chart in enclosed

With the Report view selected, click on Page2 at the bottom.

This will create another page of the report.

From select Line

With the line chart place holder selected on the canvas, place

the following fields:

On Axis, from the Orders table, place

On Values, from the place

On Legend, from the Category table, place

This will create a line chart for Sales for the different Years

by various

Formatting: With the line chart selected on the canvas, select

the roller-pin icon to set the following formatting:

Legend: Make the following changes:

Position – Right

Color – Black

Font family – Trebuchet MS

Text size – 12 pt

X-axis

Color – Black

Text size – 12 pt

Font family – Trebuchet MS

Turn the title off by clicking on it

Y-axis

Color – Black

Text size – 12 pt

Font family – Trebuchet MS

Turn the title off by clicking on it

Shapes

Stroke width – 5. This will make the trend lines thicker.

Join type – Round

Line style – Solid

Turn on the show marker by clicking on it. This will show the

round marker on the lines for each month.

Marker size – 7

Title

Title text – “Yearly Trend of Sales by Category". The formula

section denoted by fx allows you to formulate the custom

titles.

Size – 14 pt

Alignment – Center

Font – Trebuchet MS

The Line chart will appear like the one shown in the

following figure:

Figure 5.21: Line Chart

Standardizing report development

In the previous section, we learned how to create

visualizations and use filters in Power BI. We can always

follow this method for development, but in an enterprise

environment, it is always good to standardize the report

development process, so that the look and feel of the

application is consistent. It takes less time for the other

developers to follow a set of development benchmark.

In Power BI, we can standardize the report development

process by using the following:

Report Themes

Templates

We will discuss these concepts, and then continue with

visualizations.

Report themes

The design properties of each of the visualizations created

(earlier) has to be set manually. This is time consuming and

it also makes it harder to get the same look and feel for all

the report pages and visualizations across the application.

Report themes in Power BI are used to standardize the visual

design of the report pages. When a theme is applied, all the

visuals and pages use the colors and formatting options from

the selected theme.

There are two types of report themes, which are as follows:

These are the out-of-box themes and comes with the

installation of the Power BI desktop.

These report themes are created by either customizing a built-

in theme or by creating a new customized theme using the

JSON file.

In the Power BI desktop, the report themes can be applied

by either selecting a built-in theme from the View ribbon,

using a customized theme (customized from the built-in), or

importing a custom theme JSON file.

Applying built-in theme

We will apply a theme to our Power BI application We can

apply the theme to our application and save the file as so

that it doesn't distract the readers from the visualization

exercise. But if you wish to follow in the same file, you are

free to do so.

The steps to apply the theme to the Power BI application are

as follows:

From the ribbon, navigate to the View tab and click on the

drop-down next to the Themes to view all the themes and

various options.

We can select any theme of our liking; for this example, we

will select It will display the colors in the pages and filters,

as shown in the following screenshot:

Figure 5.22: Themes

This will change the colors of the report page, filters, etc.

If some component did not get the background color, we can

change the background color to apply the theme color, as

shown in the following screenshot:

Figure 5.23: Changing the background color

The other options available in the theme are as follows:

Browse for This option is used to import the downloaded

JSON theme file. You can navigate to your file location.

Theme This option will take you to the themes created by the

members of the Power BI community. You can download any

JSON theme file. These downloaded JSON files are imported

using the "Browse for themes" option.

Customize current This option will let you customize the

selected theme. When this option is selected, you will get a

dialog screen to customize the various design aspects, such

as name and color, text, visuals, page, and filters pane. You

can also create or modify a JSON theme file.

Save current Use this option to export custom theme as a

JSON file. This exported theme can be used in the other

Power BI applications.

Creating and using templates

The Power BI templates are used to stream-line and

standardize the development process. A template can be

created to include the different design functionalities, such as

report layout, data model, queries, themes etc., that can be

used by the other developers in an organization.

To create and use a template file, complete the following

steps:

Start creating a Power BI desktop application with the data

model, desired theme, sample visualization, etc.

Go to File and save it as Power BI template files as shown

in the following figure:

Figure 5.24: Saving as Template

To use a template, open the .PBIT file in the Power BI

desktop by double clicking on it. Alternatively, launch the

Power BI desktop, and from the select Import/Power BI

You can easily change the Chap5_Report file to a Power BI

template by saving it as the .PBIT file.

We will now continue with the rest of the visualizations using

Line and stacked column Chart

The line and stacked charts are also called as a combo It

combines the line and bar charts in one visualization. It is

used when we have to compare multiple measures on the

same axis.

Usage of combo chart:

A combo chart is used for the following requirements:

Comparing two measures.

Displaying one measure on the line chart and another

measure on a column chart on the same axis.

Displaying the relationship between the two measures.

Exercise 4:

Create a combo chart or line stacked chart to compare Sales

and Profit in various Segments

The steps to create a Combo or Line stacked chart are as

follows:

(Refer to the page on the Line and stack Column Chart in

the enclosed

With the Report view selected, click on the at the bottom to

create a new page.

Select the Line and Stacked column chart from the

visualizations.

With the placeholder of the chart selected, from the Orders

table, select Year and

This will create a bar chart for the Sales by different Year.

From place the Profit over the Line values. This will create a

line for Profit over the Sales

From place the Segment over the Column series. This will

create a stack for the different Regions over the

Change the formatting of the chart by completing the steps

covered in the previous sections in this chapter.

The Line and Stacked chart with Sales is displayed on the left

axis and Profit is displayed on the right with Years on the x-

axis are as follows, as shown in the following figure:

Figure 5.25: Line and Stacked chart

Ribbon chart

A Ribbon chart is used to discover which data category has

the highest rank, that is, the Largest value. It displays the

rank change effectively and always displays the highest

rank/value on the top for each time period.

Exercise 5:

Display how the different Product Categories rank over various

months in a year

The steps to create a Ribbon chart are as follows:

(Refer to the page on Ribbon in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Ribbon chart from

With the placeholder of the chart selected on the canvas,

from the Orders table, drag and place Month on the axis.

Place Sales on values.

From the Category table, place Category over the

This will create a month-over-month ribbon chart.

We can select the Year filter using the Filter on all the pages

to see the ribbon chart for the different months in a Year.

Formatting in the ribbon chart is similar to the other charts

with some additional options.

Select the chart and click on the roller pin for formatting.

Select This is the formatting option for the ribbons in the

chart. The Spacing option adjusts the spacing between the

ribbons on the chart. Change it to

After performing the formatting, as shown in the following

figure, which is similar to the other charts, we will get a

ribbon chart.

Figure 5.26: Selecting Year to filter the data in Ribbon chart

The following chart displays the ribbons for the Sales by

Month and Category for the Year 2015:

Figure 5.27: Ribbon Chart

From this chart, just by a glance, we can say that in Jan,

Furniture ranked higher, and in March, Technology ranked

higher as compared to the other technologies.

Waterfall chart

The Waterfall chart displays the running total of a measure. It

shows how a measure value has changed over a period of

time.

Exercise 6:

Display how the different Product Categories rank over the

various months in a year

The steps to create a Water fall chart are as follows:

(Refer to the page on Waterfall in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Waterfall chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Orders table, drag and place Month on Place Profit

on Values.

This will create a waterfall chart. We can select a specific year

from the filter to see the how the profit has increased or

decreased over the different months.

Use Breakdown to add more data; this will help in displaying

the contributors to the Profit's progression.

From the Category table, place Category over the Breakdown.

We can also select a specific Category from the filter to see

the effect of one category on profit.

The formatting is similar to the other charts, as shown in the

following screenshot:

Figure 5.28: Waterfall chart

Scatter chart

A scatter chart is used to display the relationship between

two measures. To create a scatter chart, the measures are

placed on the x-axis and y-axis. It uses bubbles/circles or any

other available shapes to represent the values of the

measures. A dimension can also be used to analyze the

measures over the different categories.

Exercise 7:

Display the relationship between Profit and Quantity for

different Customers by Count of Orders they made.

Also, get the Top 10 Customers by Profit.

The steps to create a Scatter chart are as follows:

(Refer to the page on scatter chart in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Scatter chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Orders table, drag and place Profit on the x-axis

and Quantity on the y-axis.

This will display just one bubble as it is displaying the

relationship between the measures for the entire data set.

From the Customer table, place Customer Name on We will

get a lot of bubbles corresponding to all

To get bubbles of different colors based on the customers,

from the Customers table, place Customer Name on the

legend. This will display the bubbles in different colors.

Now, we will set the size of the bubble based on the number

of Orders made. To achieve this, from place Order ID on as

shown in the following screenshot:

Figure 5.29: Field placement to create a scatter chart

Top 10 To display the top 10 customers, from the Customer

Name filter, select the filter type as Top N and specify the

value as 10. In By value, drag and place Profit from the

Orders table.

This will give a scatter chart for the top 10 customers by

profit and the number of orders they made and the quantity

purchased.

Select the roller pin icon to set the formatting. Using the

General option, make the following changes:

Turn off the legend’s display as we don't need the legends.

On the x-axis, change the color to black and increase the font

size to 12. Change the font family to Trebuchet MS, or as

you desire.

On the y-axis, do the same as the x-axis.

On Data Color, change the colors, if they appear similar to

each other. It will help in differentiating between them.

Align the Title to center.

We can hover over the bubble (in the chart) and get the

name of the etc, as shown in the following screenshot:

Figure 5.30: Scatter plot

Donut chart

The donut and pie charts are similar charts as they both

display the percentage of the total. The different colors on the

chart display the different categories that make up the total.

The Donut chart has an empty space in the center, just like

a donut.

Exercise 8:

Display the percentage of Profit by each Segment

The steps to create a Donut chart are as follows:

(Refer to the page on Donut Chart in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the donut chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Orders table, place Profit on Values and Segment on

the

This will display a donut chart with Segment on colors and

percentage of Profit in each Segment.

Change the formatting for and Data

The donut chart will appear as shown in the following figure:

Figure 5.31: Donut Chart

Treemap

Treemap is used to display the hierarchical/tree data in a set

of rectangles. The size of the rectangle is based on the value

of the measure. A Treemap is used to display large amounts

of hierarchical data, which is difficult to display in any other

chart. The bigger values are displayed on the left.

Exercise 9:

Display Sales by Sub-Category and Segment

The steps to create a Treemap are as follows:

(Refer to the page on Treemap in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Treemap chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Category table, place Sub-Category on the From the

Orders table, place Sales on From the Customers table, place

Segment on the

This will display a Treemap chart with colors on the Segment

which is further divided by different Segments, as shown in

the following screenshot:

Figure 5.32: Treemap

Highlighting and Cross filtering:

Exercise 10:

Use Treemap as a filter for other charts

(Refer to the page on Highlighting and Cross filtering in the

enclosed Chapter

A Treemap is a great way of Highlighting and Cross filtering

the other charts on a page. To try this out, copy the Treemap

on a separate page and copy some other charts too on the

same page. For this example, we will copy the line, column

chart, and donut chart.

Now, when we click on the the other charts will filter and

vice versa.

Map

A Map is used to display the data based on the geographical

locations. It is created by using the following field setting, as

shown in the following figure:

Figure 5.33: Map field Setting

In the preceding field setting, you will find the following:

Location: It is the location-based field in the tables, for

example, State or City. This will create circles on a Map.

Legend: It will have another dimension, which will display the

different colors in Locations.

Latitude and Longitude: In case there is some ambiguity in

the location data, such as duplicate names of the cities, etc.,

we can specify the Latitude and Longitude values.

Size: This will display circles with the size according to the

value of measure in that location. For example, if we use it

will display bigger circles if the Sales in that location is

higher.

Exercise 11:

Display Count of Customers in various States and Region

The steps to create a Map are as follows:

(Refer to the page on Map in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Map chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Customers table, select This will display a Map of

USA with circles for each State.

Place Region on This will display the map with different

colors of

From the Orders table, place CountofCustomers on

This will change the size the circles based on the amount of

If we hover over the circles, we can see the tooltip display

CountofCustomers in State and as shown in the following

screenshot:

Figure 5.34: Map visualization

Try the formatting options to change the look and feel of the

Map.

One important option is Map Styles. It has themes such as

Road, Aerial, Dark, Light, and Grayscale. Try the different

options and see the difference.

Filled map

A filled map, also known as the choropleth map, displays the

filled shapes or patterns to display how a measure value

differs across the geographical locations.

Exercise 12:

Display Count of Customers in various States and Region

We performed this exercise in the previous section using

Map. We will do the same, using Filled Map and see the

difference.

The steps to create a Filled Map are as follows:

(Refer to the page on Filled Map in the enclosed

With the Report view selected, click on the + symbol at the

bottom to create a new page.

Select the Filled Map chart from the visualizations.

With the placeholder of the chart selected on the canvas,

from the Customers table, select This will display a Map of

USA 'filled' with one color.

On the place This will display the map with different filled

colors of the It will be easier to see which States fall under

which

From the Orders table, place CountofCustomers on Tooltips.

The filled map will appear as shown in the following figure:

Figure 5.35: Filled Map

Q&A

Q&A allows the user to explore the data based on the

available data set. The question can be asked in a natural

language. Power BI makes a suggestion on the questions. We

can pick the default questions or type a custom question.

When a question is typed, Power BI selects the best

visualization to answer your question.

Exercise 13:

Use Q&A and let a user get answers to the questions

The steps to create a Q&A are as follows:

(Refer to the page on Q & A in the enclosed

Select the Report view and add a new page by clicking on

the + symbol.

Select the Q&A type chart from the

The place holder of the chart shows a question edit box and

some suggestions on the questions, as shown in the

following figure:

Figure 5.36: Q&A place holder with suggestions

We can type the following question: Top 5 order sales by

customer ID.

Power BI will automatically choose the bar chart to display

this information, as shown in the following screenshot:

Figure 5.37: Q&A displays a Bar chart

If we want to choose a particular visualization, mention it in

the Q&A. For example, a Q&A like the preceding top 5 order

sale by customer ID as Table. This will display the data as a

table.

Drill through reports

Drill through reports is useful, when we want to show the

summary on one page and details of it on another page. For

example, the summary page displays the sales by each

customer and the details page shows the details of the

Customers. Click on the customer name on the summary

page and it will take you to the details page.

Exercise 14:

Create a Summary page to display Sales by Customers

Clicking on a particular customer will drill through to the

detail page.

The steps to create the drill through reports are as follows:

(Refer to the page on Summary and Drill Thru in the

enclosed

Select the Report view and add a new page by clicking on

the + symbol. Name this page as

Select the Stacked bar chart from Visualizations. From add

Customer From select

This will create a bar chart for Sales by

Create a new page by clicking on the + symbol at the bottom

and name it Drill On this page, use the table to display all

the fields from the Customers table. This page will work as a

detail page.

On the Drill Thru page, select the Customers table, click on

the more option’s ellipses next to Customer Name and select

Add to drill as shown in the following screenshot:

Figure 5.38: Adding Customer Name to drill through

This will add Customer Name as a Drill Through field under

fields. Observe that Power BI has automatically added a back

button next to the table, as shown in the following figure:

Figure 5.39: Back button on drill through

Drill thru in Action:

To check the drill through option, navigate to the Summary

page, right click on any customer name/bar and select Drill

through and then select Drill as shown in the following

screenshot:

Figure 5.40: Performing drill through

This will take you to the drill page and display the details of

the customers selected in the first page, as shown in the

following screenshot:

Figure 5.41: Details of Customer Hunter Lopez

We can navigate back to the Summary page by using the

back button.

Conclusion

Visualizations are the most important part of any BI

implementation, as the users get a quick insight into the data

using the visualizations. In this chapter, we learned the

different types of visualizations and when to use them. Every

chart displays the data in a different way, but the overall

aggregated data is the same. Visualizations are used to

answer the business questions. For example, using the bar

charts, we can get the Sales in different years and categories.

Using the trend charts, we can get the Year trend of the

sales.

We also learned some advanced charts, such as Waterfall and

Ribbon. Power BI provides a ton of visualization options, but

which chart is used, depends on what KPIs the users are

interested in.

In the next chapter, we will learn how to deploy our

application on the Power BI Service.

Questions

Which is the best visualization to use to display a single

value?

In which scenarios will a bar chart be used?

Which chart should be used to display the Year-over-Year

trend?

Which chart is used to display the ranking of the different

data category?

Which chart is best suited to display the comparison between

two measures?

Which chart is used to display the percentage of totals?

Which button automatically appears when the drill through

functionality is used?

Answers

Card

To compare values of unique categories

Line chart

Ribbon

Scatter chart

Pie chart

Back button

CHAPTER 6

Power BI Service

Introduction

In the previous chapter, we got an in-depth knowledge on

visualizations and understood how they are created. In this

chapter, we will look into the Power BI service and its

functionality. The Power BI service is a web application and is

a Software as a Service component of the Power BI. In the

Power BI service too, we can develop visualizations and share

them with the other team members. A good knowledge of the

Power BI service is essential for the developers and power

users.

Structure

In this chapter, we will discuss the following topics:

Understanding the Power BI Service

Building blocks of the Power BI Service

Creating visualizations in the Power BI Service

Creating Tiles and Dashboards

Publishing reports from the Power BI desktop

Objectives

The objective of this chapter is to understand the functionality

of the Power BI Service and its various components. We will

also learn how to connect to the data in the Power BI

Service and create visualizations and dashboards.

Understanding the Power BI Service

As we understood in the earlier chapters, Power BI is a

group of services, apps, and connectors that work together to

create, share, and generate business insights.

Power BI Service, also referred to as Power BI online, and is

provided as SaaS. The Power BI Service displays dashboards

and reports that presents all the data in one place. In Power

BI, we can connect to the data, create visuals, and share

them with our team or we can consume the visualizations

shared by others.

Power BI Service workflow

A typical scenario of using the Power BI Service would be as

follows:

First, create a data model and the reports using the Power BI

desktop.

Next, publish these reports to the Power BI Service.

Consume these published reports in the Power BI service and

modify them as needed.

Create new reports in Power BI Service as needed.

And finally, create dashboards from reports in the Power BI

Service.

Power BI provides a complete set of functionalities to create

reports and dashboards.

Power BI Service interface

Sign up to the Power BI Service from the Power BI desktop

(from the sign up icon on the top) or use

https://app.powerbi.com/ and sign in using your account

credentials.

To sign up for the Power BI Service, you will need a work or

school email address. You will not be able to sign up using

the email address like etc.

Power BI Service provides all the capabilities to a user to

connect to the data, and create visualization and dashboards.

It is divided into the following different sections, as shown in

the following figure:

Figure 6.1: Power BI Service Interface

#1 Navigation pane: In this pane, navigate to the favorites,

recently opened content, published datasets, apps, and your

workspace. My workspace is your personal workspace and

holds your content.

#2 Microsoft 365 app launcher: This will help in launching

the other Microsoft apps such as Outlook, PowerPoint,

OneDrive, SharePoint, etc.

#3 Home button: This will let you navigate back to the Power

BI Service home.

#4 Search, settings, help, and feedback: You can search for

dashboards, view settings, and download.

#5 In this space, we will see the sample dashboards,

favorites, frequently visited dashboards, reports, and

workspace.

The Power BI Service comes with a comprehensive set of

tools, in which you can explore a ton of options.

Building blocks of the Power BI Service

Power BI Service works on five important essentials, such as

Dashboards, Reports, Workbooks, Datasets, and Dataflows.

These essentials are categorized into workspaces, which are

created on Capacities. We will look into each one of these in

the following section:

Capacities: Capacity represents a set of resources such as

storage, processor, and memory. It is used to host and

deliver the Power BI content. There are two kinds of

Capacities based on the client's need – shared or dedicated.

By default, workspaces are created on a shared capacity.

Workspaces: Workspaces are created on capacities. They are

the containers that hold all that you would need to create a

Power BI application, such as datasets, data flows, reports,

and dashboards. There are the following two types of

workspaces:

My It is the personal workspace available to us to work with

our own content. Only you have access to your workspace

but you can share dashboards and reports with the other

users.

In this workspace, we can collaborate and share the content

such as dashboards, reports, etc. We can also add the other

team members to our workspace, as long as they have the

Power BI pro licenses.

Dataflows: Dataflows can only be created and managed in

workspaces; they are not available in My Workspace. The

main function of the dataflow is to combine the data from

disparate sources. They are usually used in large

implementations. The dataflow performs the data prep from

the various data sources and makes the data available for the

datasets. It is an example of the Extract, Transform, and Load

(ETL) functionality in Power BI. Users can connect to the

dataflows instead of going directly to the underlying data

sources.

Datasets: A dataset is a collection of data that you can

import or connect. In our example, a dataset is a collection

of and other tables.

Dataset can also be sourced from a data flow. A single

dataset can be part of multiple workspaces.

A single dataset can be used in multiple reports.

Visualization created from one dataset can be displayed in

multiple dashboards.

To connect to a dataset, select Get data from the Similar to

the Power BI Desktop, Get data is used in the Power BI

Service to connect to data, as shown in the following figure:

Figure 6.2: Adding datasets

Report: We have seen how to create reports in the Power BI

desktop. A Power BI report can be of one or more pages,

containing one or more visualizations or visuals. All the

visualization on a report comes from one dataset.

Dashboards: Dashboards are created in the Power BI service.

A Power BI Dashboard is similar to a Car's dashboard, it

provides all the useful information at a glance. It contains

zero or more tiles. Each tile is pinned from a report. A

report containing multiple pages can be pinned to a single

tile.

One dashboard is associated to a single workspace.

It can display visualizations from different reports and

datasets.

It can display visualizations pinned from the Excel workbook.

Workbooks: Using the Get Data functionality, connect to an

Excel workbook. We can pin the elements from an Excel

application into the dashboard.

The understanding of the preceding terms and concepts will

help in using the Power BI Service efficiently.

Creating visualizations in the Power BI Service

Similar to the Power BI desktop, we can create the different

types of visuals in Power BI Service.

The Power BI Service doesn't provide the strong data

modeling capabilities since it is a web-based interface, but

you can still connect to the data and design visuals.

Get data

The steps to connect to the data using Get Data are as

follows:

Launch the Power BI Service; sign in using the Power BI

desktop or use https://app.powerbi.com/ and sign in using

your account credentials.

From the navigation pane on the left, from My select Upload

a You can also scroll down and select Get

From the Get Data screen, under Create new in the Files box,

click on

Create new content using We can connect to Files based on

data, such as the Excel or CSV files or databases, as shown

in the following screenshot:

Figure 6.3: Create new content using Files

This will provide all the different options for the file-based

data selection.

The options are available to select the different data such as

Local file, OneDrive, SharePoint. Help on these data files can

also be accessed from ‘Learn about importing files’, as shown

in the following screenshot:

Figure 6.4: Options to select different data Files

Select Local File and browse to your enclosed files Select

We will see the following two options in the Power BI

Service:

Import Excel data into Power BI: Use this option to import

data and create visualizations.

Upload your Excel file to Power BI: This option will open the

entire Excel workbook which can be edited using the Excel

online.

Under Import Excel data into Power BI, select

We will get an error, as shown in the following figure:

Figure 6.5: Error in importing excel data

This error has occurred because the Power BI service expects

the XLS data to be a Table and our Orders.xls data is not

created as a

Resolution: To resolve this issue, open

Select the range of rows containing the data, and make sure

the first row selected contains the column headers.

From the Insert ribbon, select Table or use Ctrl + as shown

in the following figure:

Figure 6.6: Converting excel data to Table

We will get a dialog box showing the range of cells in the

table. Make sure to check on My table has headers and

select as shown in the following screenshot:

Figure 6.7: Table Range

Now the data is formatted as a as shown in the following

screenshot:

Figure 6.8: Excel data formatted as Table

We can save this XLS as only to differentiate it from

Navigate back to the Power BI Service and follow the steps

to import the Excel file, this time select

This will successfully load your XLS file. After connecting to

Power BI will display the loaded Dataset, as shown in the

following screenshot:

Figure 6.9: Dataset loaded in Power BI

We can see that the Orders_Table Dataset is loaded. A

sample Orders_Table.xlsx dashboard is also created which is

empty right now.

The steps to create a Report are as follows:

Now we can create report from the preceding loaded dataset.

Click on the More options next to the dataset and select

Create as shown in the following screenshot:

Figure 6.10: Create report selection

The interface is similar to the Power BI desktop report view

with Filters, Visualization, and fields.

Select the stacked bar chart from the visualizations. Select

Order Year and Sales from the list of fields.

The fields may appear slightly different as this is Orders_Table

loaded in the Power BI Service and not coming from the

Power BI desktop where we had Query Editor to modify the

table. Order Year and Order Month appear as separate fields

as compared to the Power BI desktop where they appeared as

the hierarchical data elements under Order

This will create a bar chart for Year and We can format the

chart according to our preference. If you need more canvas

space, click on the navigation pane on the left to hide the

navigation pane.

The steps to create a Bar chart in the Power BI Service are

similar to the bar chart created in the Power BI desktop. If

both the charts connect to the same data and displays the

same data elements, then the charts in both the applications

will look the same, as shown in the following screenshot:

Figure 6.11: Bar chart in Power BI Service

Select the Save option from the extreme right. Save your

report as Sales by

The menu at the top of the chart shows Reading this is a

contextual button. Since you are in the editing mode (as you

are the owner of this report), it displays the Reading view.

Once you share report with others, it will show them in the

Reading view, that is, they can only view it and cannot

modify.

The steps to create a Dashboard are as follows:

We have created a visual in the previous section, we will now

pin this visual to create a dashboard:

Hover over the chart and select the pin icon.

A dashboard is created by pinning the visualization. Multiple

visualizations can be pinned to create a single dashboard, as

shown in the following screenshot:

Figure 6.12: Pinning the visual

A Pin to dashboard dialog box will appear. Select New

dashboard and provide a name to the dashboard and select

as shown in the following screenshot:

Figure 6.13: Creating a dashboard from the visual

We will get a success dialog box displaying that visualization

has been pinned to the dashboard. It will display the

following two options:

Create phone view, Go to

Select Go to

You can see the dashboard under My Workspace too, as

shown in the following screenshot:

Figure 6.14: Dashboard

The menu on the dashboard provides the options to

share/collaborate with your team or add a tile.

Use the Edit option to Add a Adding a tile provides the

options to add the web content, image, text box, or a video

to the dashboard.

The steps to create another Report are as follows:

Now we will create a simple line chart from the loaded

dataset Orders_Table and pin it to the dashboard.

Navigate to My Workspace and click on the More options

next to the dataset and select Create

From the visualizations, select Line Select Order Year and Do

the required formatting. You will get a line chart showing the

trend of Sales over the years, as shown in the following

screenshot:

Figure 6.15: Trend of Sales by Year

Save the report by clicking on the save icon on the extreme

right. We can name the report as Trend of Sales by

Hover over the chart and select Pin Select the existing

dashboard and select as shown in the following screenshot:

Figure 6.16: Pin Line chart to the existing dashboard

A dialog box will appear displaying that the visualization has

been pinned. Select Go to as shown in the following

screenshot:

Figure 6.17: Visualization successfully pinned.

We will be navigated to the dashboard, where the two tiles

on the dashboard are displayed, one bar chart and one line

chart.

If at any time we wish to delete a tile, hover over the chart

and select the More options and select Delete as shown in

the following screenshot:

Figure 6.18: Deleting a tile

We can also move a tile around by simply selecting it and

moving around. The dashboard will appear as shown in the

following figure:

Figure 6.19: Final Dashboard

We can have any number of tiles on a dashboard. Make sure

the information is related, so that it presents useful

information to the users with whom the dashboard will be

shared.

If we select My Workspace on the navigation pane, a list of

our datasets, reports, and dashboards will be displayed.

Publishing reports from the Power BI desktop

Reports developed in the Power BI desktop can be published

to the Power BI Service. Reports get published with the

dataset.

The steps to publish a report from the Power BI desktop are

as follows:

Navigate to the Power BI desktop, where you have created

the visualizations. If you have followed all the chapters in this

book, then use

Sign in to your account from the Sign In icon at the top.

In the ribbon, navigate to Home and select

A dialog box for selecting a workspace will be displayed.

Select My

You will get a success dialog box. Multiple reports developed

using the Power BI desktop can be published to the Power BI

service, as shown in the following screenshot:

Figure 6.20: Publishing Chapter5_Reports

Navigate to the Power BI service, and go to My You will see

your report and dataset loaded, as shown in the following

screenshot:

Figure 6.21: Report and dataset published

Click on Chapter5_Reports which is of Type Report. It will

provide the list of pages in the report.

Click on any page and pin it to the new or existing

dashboard by completing the steps mentioned in the earlier

sections, as shown in the following screenshot:

Figure 6.22: Page from the published report

By following the preceding steps, we can publish reports from

the Power BI desktop to the Power BI service, create tiles

and dashboards, and share them with the users.

Conclusion

In this chapter, we got familiarized with the Power BI Service.

It is an important application for publishing, developing, and

sharing the content from the Power BI desktop. Workspace in

the Power BI service is a useful concept. The users have their

own personal workspace where they can develop the content

and share with the other users. The Development environment

of the Power BI Service is similar to the Power BI desktop;

the only difference is that we can create dashboards in the

Power BI Service. A dashboard is made of one or multiple

sheets.

In the next chapter, we will see how to secure a Power BI

application by implementing a row-level security.

Questions

What is a Power BI Service and how does it differ from the

Power BI desktop?

What are the important components of the Power BI Service?

What is the difference between Dataflow and Dataset?

How are dashboards created?

Can we create dashboards in the Power BI desktop?

Answers

Power BI service is a Software as a Service (SaaS) component

of Power BI. It provides development and collaboration

functionalities. A Development environment is similar to the

Power BI desktop but it does not have Query Editor and DAX

editor as in the Power BI desktop.

Important components of the Power BI Service are

dashboards, Reports, Workbooks, Datasets, and Dataflows.

Dataflow is the Extract, Transform, and Load (ETL) component

of Power BI. It extracts the data from the datasets and

performs ETL. It unifies the data from the disparate data

sources. The users need not understand the complexity of the

underlying datasets, instead they can connect to the dataflow

and design their visualizations.

Dashboards are created by pinning the visualizations in a

report.

Dashboards BI Service.

CHAPTER 7

Securing Your Application

Introduction

In the previous chapter, we got an in-depth knowledge on

visualizations and how they are created. In this chapter, we

will learn how to secure the application using the row-level

security in Power BI. The data model and visuals that we

created in the previous chapter will be used to explain the

security concept.

It’s important to learn about security and implementation

because it saves your application from unauthorized access,

and the users see only the relevant data.

Structure

In this chapter, we will discuss the following topics:

Security concepts

Managing and creating roles in Power BI desktop

Creating the DAX filter to implement RLS

Configuring roles in the Power BI Service

Objectives

After studying this chapter, we will be able to define the row-

level security and why it is needed. We will also be able to

create security roles in Power BI and DAX filter to implement

the row-level security.

Row-level security

Power BI uses the row-level security to restrict data access to

the users. Row-level security is implemented using the user

roles defined in the Power BI application. It restricts the user

to see the data pertaining to them and not the entire data.

Row-level security is applied by enabling the different user

roles and giving data access permission to the users assigned

to these roles.

Implementing the row-level security

To implement the row-level security, perform the following

steps:

Create visualization/s on which the security will be

implemented.

Create the user roles.

Create the security/table filter using DAX.

Test the roles in the Power BI desktop.

Power BI Service configuration.

Row-level security is easy to implement, it is a powerful way

to secure your data.

Exercise:

Implement row-level security that restricts the Salespersons to

view the data only for their assigned regions.

For this exercise, Chapter7_RLS.pbix will be used. It contains

the same data model as used in the previous chapter. We

will review the Sales Person table.

Navigate to Data View and from the select Sales The Sales

Person table contains the other data elements, but for this

exercise, we are interested only in the following:

Figure 7.1: Sales Person data

Our objective is that when a Sales Person views the report

visuals, he should be seeing the data pertaining to his

Location, that is, the relevant Customer Regions.

Create visualization

For this exercise, we will be using some of the visuals from

You can either copy (from and paste them into a new

application or recreate them.

We will use the stacked bar chart, map, and filled map from

the previous chapter. The following figure displays the original

chart, without any security applied.

Figure 7.2: Stack bar chart and totals

Creating the role – Sales Person East

Now, we will create the appropriate roles for the Sales The

first one will be Sales Person East. This sales person will be

allowed to see the data only for the Customers located in the

Eastern region.

From the menu, navigate to the Modeling ribbon and select

Manage as shown in the following screenshot:

Figure 7.3: Manage roles option

In the Manage roles dialog box, under select

Specify the name of the role, Tables, and Table filter DAX

Expression, and click on as shown in the following

screenshot:

Figure 7.4: Manage roles settings

In the next Table filter DAX expression box, change the Value

to as shown in the following screenshot:

Figure 7.5: Table filter DAX expression

After specifying the expression, select

East is the value of Region. Make sure that it has the same

spelling and case as stored in the Customer table.

Similarly, create the roles for Sales Person West, Sales Person

South, and Sales Person Central.

For Sales Person West, specify the Table filter DAX expression

as follows:

[Region] = "West"

For Sales Person South, specify the Table filter DAX

expression as follows:

[Region] = "South"

For Sales Person South, specify the Table filter DAX

expression as follows:

[Region] = "Central"

After creating all the roles, under Manage you will see all the

four roles with the filter icon on the Customers table, as

shown in the following screenshot:

Figure 7.6: Roles created

Verifying the roles in the Power BI desktop

After setting up the roles, we can verify if the roles see the

relevant data. Navigate to the Modeling view again, select

View as and select one of the roles, as shown in the

following figure, for example, Sales Person East, and click on

Figure 7.7: Testing the roles in Power BI desktop

This will display the data in the Stacked bar report for only

the Eastern region, as shown in the following figure:

Figure 7.8: Chart display for only Eastern region

It will also display the role for which the data is displayed at

the top. If there are multiple visuals in the application, the

data for all the visuals will be filtered for the role selected.

Power BI Service configuration

After performing all the security tasks, we need to publish

this application on the Power BI Service and do the

configuration on the Power BI Service.

To access the Power BI Service, you need to sign up for it.

To sign up for the Power BI Service, you will need a work or

school email address. You will not be able to sign up using

email addresses like or etc.

To sign up to the Power BI Service, click on the small signup

icon on the top of Power BI desktop window:

Figure 7.9: Power BI sign in

I have already signed up and that’s why it displays my user

ID,

After you sign into your account, from the Home ribbon,

select as shown in the following screenshot:

Figure 7.10: Publish your application

Select a destination My This will publish the application, as

shown in the following screenshot:

Figure 7.11: Published application successfully

Click on your application; in my case, it is It will further

verify your account and ask if you want to share your

application with others. You can skip the step, if you don’t

have anyone to share your application with.

It will then show a request access box, to access your

request. Click on Send request.

Once you have successfully logged in and granted permission,

you can see the report under My as shown in the following

screenshot:

Figure 7.12: Accessing your report on Power BI Service

In case you don’t see the report, make sure to clear the

cache of your browser and try again.

Scroll down and select the Datasets and then select as shown

in the following screenshot:

Figure 7.13: Security option under Datasets

On the row-level security screen, add people or groups who

belong to this role. For this exercise, I have added one Sales

Person in Sales Person Central and one in Sales Person East.

Testing created roles in the Power BI Service

We can test the users and the assigned roles in the Power BI

Service. Click on the ellipsis next to the role and select Test

as as shown in the following screenshot:

Figure 7.14: Testing the roles

Click on Test as role for Sales Person East (1), you will get

the chart for the eastern region, as shown in the following

screenshot: This is the same chart that we saw on the Power

BI desktop:

Figure 7.15: Chart display for Sales Person East

Using the row-level security, when the user having the role of

Sales Person East or Sales Person Central signs into Power

BI, he will be restricted to only his data.

Conclusion

In this chapter, we learned about the row-level security in

Power BI. Row-level security provides the users with different

views of the data based on their role. To implement RLS, we

need the Power BI desktop application with visuals, roles, the

tables to be used, and the Table filter. Once these tasks are

completed, perform the Power BI Service configuration.

This completes all the concepts in Power BI. Hope you had a

good learning experience.

Questions

How is data level Security implemented in Power BI?

What is the objective of implementing RLS?

What are the three important aspects of RLS?

What option is used to test the user role in the Power BI

desktop?

Can I signup in the Power BI Service using my Gmail

account?

Answers

Data level security is implemented using Row-level Security

(RLS).

RLS is implemented to restrict the user to his view of data.

Create roles, select tables on which security will be applied,

and provide the Table filter DAX expression.

The user roles can be tested in the Power BI desktop by

using View as the role option under the Modeling ribbon.

The Power BI Service allows only work or school email

accounts.

Index

A

ALL function

about 129

Sales of all Orders in dataset, calculating 130

variations 130

AND function

about 124

Good and Bad Orders by Sales, finding 125

Append Queries as New option 95

Append Queries option 94

Azure SQL database

connecting to 67

data, loading from 68

B

bar charts

about 150

stacked bar chart, creating

benefits, BI system

adhoc analysis 3

data management 2

information broadcasting 3

secure delivery 3

best practices, of data modeling 83

BI components

data mart 4

data model 5

data sets 3

data warehouse 3

extract, transform and load (ETL) 3

BI system

advantages 2

building blocks, Power BI Service

capacities 179

dashboards 181

dataflows 180

dataset 180

report 181

workbooks 181

workspaces 180

built-in theme

applying, to Power BI application 159

Business Intelligence (BI) 2

C

calculated column

about 103

CityState, creating 106

creating 104

properties 102

UnitPrice calculation, verifying 104

calculated measure

about 107

creating 107

properties 107

SalesMeasure, creating 108

Calculate function

about 127

Sales for Year 2018, calculating 128

CalculateTable function

about 128

Sales for all the Years, calculating 129

Calendar function

about 134

advantage 134

DateDim table, creating 135

capacities 179

card visual

creating 147

of Customers card, creating 148

Total Sales card, creating 149

using 146

choropleth map 171

combo chart 160

conformed dimension tables 7

core components, Power BI

Power BI desktop 12

Power BI mobile apps 14

Power BI Report Server 14

Power BI Service 14

Power Pivot 14

Power Query 12

Power View 14

CountA function

about 115

using

CountAX function 118

CountBlank function 118

Count function

about 114

using

count functions

about 114

Count 114

CountA 115

CountAX 118

CountBlank 118

CountRows 118

CountX 118

CountRows function 118

CountX function 118

D

dashboard

about 10

example 11

Data Analysis Expressions (DAX) 100

data connections, in Power BI

about 33

bonus section 57

category data, loading from Excel file

connecting, from Azure SQL 67

Customers and Product tables, loading

database tables, connecting to 33

data, connecting from Microsoft SharePoint 60

data, loading from Azure SQL 68

data, loading from Excel file 46

data, loading from Microsoft SharePoint

data, loading from MS SQL server 50

data, loading with Query Editor 68

DirectQuery option 51

import query option 51

loaded query, verifying 40

Orders table, loading 35

Power Query Editor 36

Sales Person table, loading from SQL Server 53

static table, creating in Power BI 53

web data source, connecting to

dataflow 180

data loading, with Query Editor

column, creating 78

columns, splitting by delimiter 74

conditional column, creating 79

CustomerSales_Report.xls format, loading 71

CustomerSales_Report.xls, transforming 72

Group By, applying to CustomerSales_Report 76

preceding data issue 70

review of CustomerSales_Report.xls 69

Total by Customer, calculating with Group By 76

Totals by Year and Customer, calculating with advanced Group

By 77

data mart

about 4

creating 5

data model

about 82

reviewing 140

data modeling

about 82

best practices 83

relationships 83

dataset

about 180

analyzing 24

data sources, into categories 29

data visualization. See visualizations

data warehouse

about 3

creating 5

data analysis and visualization applications 4

ETL process 4

relational database 4

date and time functions

about 134

Calendar function 134

DateDiff function 135

DateDiff function

about 135

time taken for shipping orders 135

DAX (Data Analysis Expressions) 14

DAX expressions

about 101

variables 136

DAX functions

about 100

calculated columns and measures 102

count functions 114

date and time functions 134

filter functions 126

information functions 101

logical functions 123

mathematical functions 101

scalar function 100

table function 100

text functions 101

dimension tables

about 5

conformed dimensions 7

role playing dimensions 7

Slowly Changing dimensions (SCD) 5

donut chart

about 167

creating 167

drill through reports

about 173

creating 174

using 175

E

ETL 3

Executive User

about 16

responsibilities 17

Extract, Transform, and Load (ETL) functionality 180

F

fact tables

about 7

conformed fact tables 8

fact-less-fact table 7

filled map

about 171

creating 171

Filter function 127

filter functions

about 126

ALL function 129

Calculate function 127

CalculateTable function 129

Filter function 126

Related function 130

RelatedTable function 132

Value function 133

filters and slicers

advanced filtering 154

basic filtering 153

filters, creating in all pages 155

Top N filter 154

used, for controlling data display in charts 152

using, in report 153

full outer join

about 94

Products and Category tables, joining 94

G

Get Data option 12

I

IF function

about 123

Timezone column, creating in Sales Person table 124

information functions

about 119

ISERROR 119

LOOKUPVALUE 120

USERNAME 120

Information Technology (IT) 2

ISERROR function 119

J

joins

full outer join 94

inner join 88

left anti 94

left outer join 90

OrderDetails.xlsx, loading 90

right anti 94

right outer join 92

K

Key Performance Indicators (KPI's)

about 9

dashboard 10

visualizations 9

L

left anti 94

left outer join

about 90

Orders and OrderDetail tables, joining

line and stacked column chart

about 160

creating 161

usage 160

line chart

creating

loaded tables

manual relationship, creating between Orders and Customers

table 87

manual relationship, creating between Products and Category

tables 88

queries, combining using joins 88

records, appending from NewCustomers table to Customers

table

relationship between Orders and Products tables, reviewing 85

reviewing 84

logical functions

about 123

AND function 125

Coalesce 126

False 126

IFError 126

IF function 124

NOT 126

OR 126

Switch function 125

True 126

LOOKUPVALUE function

about 120

alternateResult 120

locations, loading from SalesPerson_Location to Sales Person

table 121

redundant tables, hiding 122

result_columnName 120

SalesPerson_Location table 120

search_columnName 120

search_value 120

M

map

about 169

creating 170

field setting 169

mathematical functions

about 111

Sum 112

SumX 113

SumX, versus Sum 113

Merge Queries as New option 89

Merge Queries options 89

multi-page reports

bar charts 150

card visual, creating

copies of visual, creating 149

creating, with visualizations 145

filters and slicers 152

line chart 155

visualizations, removing 146

O

OData Feed 60

Open Data protocol (OData) 60

P

Power BI

architecture 15

as Business Intelligence application 11

basics 1

components 12

data connections 28

development environment, setting up 25

functions 12

implementation, initiating as developer 22

row-level security 195

users 15

Power BI Analyst

about 16

responsibilities 16

Power BI desktop

about 12

data sources, in different categories

overview 19

reports, publishing from 192

Power BI desktop developer

about 15

responsibilities 15

Power BI desktop installation

performing 19

system requisites 18

Power BI desktop interface

about 19

Data view 21

fields 21

menu or ribbon 20

Relationship view 21

Report view 20

visualizations 21

Power BI environment 15

Power BI licensing

Power BI Desktop free edition 17

Power BI Premium 17

Power BI Pro 17

Power BI mobile apps 14

Power BI online 178

Power BI reports

about 141

creating 142

publishing, from Power BI desktop 192

versus, dashboards 141

Power BI report server 14

Power BI Service

about 178

building blocks 179

configuration, performing

interface 179

visualizations, creating 181

workflow 178

Power BI Service interface

feedback 179

help 179

home button 179

Microsoft 365 app launcher 179

navigation pane 179

search 179

settings 179

Power Pivot 14

Power Query 13

Power User

about 16

responsibilities 16

Power View 14

Q

Q&A

about 172

creating 173

queries

combining, append used 95

Query Editor

about 68

Group By functionality 74

reference, versus duplicate 75

used, for data loading 69

quick measures

categories 109

characteristics 108

creating

R

Related function

about 131

Sales in SalesTarget table, dividing with Units in SalesPerson

table 132

RelatedTable function 132

relationships

about 83

manage relationships option 84

many to many 83

many to one (*:1) 83

one to one (1:1) 83

report development interface

fields 143

Fields, Format, and Analytics 144

Filter pane 144

report canvas 142

visualizations 143

report development process

report themes 157

standardizing 157

templates 159

reports. See Power BI reports

report themes

about 157

browse for themes option 159

built-in theme 158

customize current theme option 159

custom theme 158

save current theme 159

theme gallery option 159

ribbon chart

about 161

creating 163

right anti 94

right outer join

about 92

SalesTarget and Sales Person tables, joining 93

role playing dimensions 7

roles

creating 199

Sales Person East 198

testing, in Power BI Service 204

verifying 200

row-level security

about 196

implementing 197

Power BI Service configuration

role, creating 199

roles, testing in Power BI Service 204

roles, verifying 201

visualization, creating 197

S

scalar function 100

scatter chart

about 164

creating 166

security 195

SharePoint

Odata Feed connection error, resolving 63

SharePoint List

about 61

connecting to, from ODataFeed 62

connecting to, using SharePoint connector 65

connection error, resolving 66

Slowly Changing dimensions (SCD)

about 5

type1 6

type2 6

type3 6

snowflake schema 9

Software as a Service (SaaS) 177

star schema

about 8

dimension tables 5

example 8

fact table 7

static table

characteristics 54

need for

SumX

using 114

Switch function

about 125

month names, creating from Order Date in Orders table 126

T

table function 101

templates

creating 159

using 160

Treemap

about 167

creating 168

using, as filter on other charts 169

U

UnitPrice calculation

verifying 105

USERNAME function 120

users, Power BI

Executive User 16

Power BI Analyst 16

Power BI desktop developer 15

Power User 16

V

Value function

about 133

unique Customers, finding in Orders table 133

variables, DAX expressions

about 136

VAR statement 136

VAR statement

about 136

Sales for 2018, calculating 137

visualizations

about 140

bar chart 150

creating, in Power BI Service 181

dashboard, creating

donut chart 167

drill through reports 173

examples 141

filled map 171

Get Data, used for connecting to data

line and stacked column chart 160

line chart 155

map 169

Q&A 172

report, creating 186

ribbon chart 161

scatter chart 164

simple line chart, creating 189

tile, deleting from chart 190

Treemap 167

Waterfall chart 163

W

Waterfall chart

about 163

creating 164

workspaces

about 180

my workspace 180

	Start

